Mitochondrially-derived oxidative stress has been implicated in the development of obesity-induced insulin resistance and is correlated with down regulation of Peroxiredoxin-3 (Prdx3). Prdx3 knockout mice exhibit whole-body insulin resistance, while Prdx3 transgenic animals remain insulin sensitive when placed on a high fat diet. To define the molecular events linking mitochondrial oxidative stress to insulin action, Prdx3 was silenced in 3T3-L1 adipocytes (Prdx3 KD) and the resultant cells evaluated for mitochondrial function, endoplasmic reticulum stress (ER stress), mitochondrial unfolded protein response (mtUPR) and insulin signaling. Prdx3 KD cells exhibit a two-fold increase in HO, reduced insulin-stimulated glucose transport and attenuated S phosphorylation of the mTORC2 substrate, Akt. Importantly, the decrease in glucose uptake can be rescued by pre-treatment with the antioxidant N-acetyl-cysteine (NAC). The changes in insulin sensitivity occur independently from activation of the ER stress or mtUPR pathways. Analysis of mTORC2, the complex responsible for phosphorylating Akt at S, reveals increased cysteine oxidation of Rictor in Prdx3 KD cells that can be rescued with NAC. Taken together, these data suggest mitochondrial dysfunction in adipocytes may attenuate insulin signaling via oxidation of the mammalian-target of rapamycin complex 2 (mTORC2).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2017.09.171 | DOI Listing |
Dokl Biochem Biophys
October 2024
Kazan State Medical University, Kazan, Russia.
Chronic lymphocytic leukemia is a hemoblastosis of CD5 B lymphocytes with lymphocytosis, damage to the lymphatic organs, occurring in the older age group, the etiology and pathogenesis of which are not fully understood. Oxidative stress is an important factor in the regulation of stem cells and the activation of intracellular survival signaling pathways in chronic lymphocytic leukemia cells. The aim of the study was to analyze the current data on the role of redox status changes in the pathogenesis of chronic lymphocytic leukemia.
View Article and Find Full Text PDFAntioxidants (Basel)
September 2024
Laboratory of Animal Physiology and Molecular Nutrition, Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
Heat stress (HS) is a significant concern in broiler chickens, which is vital for global meat supply in the dynamic field of poultry farming. The impact of heat stress on the ileum and its influence on the redox homeostatic genes in chickens remains unclear. We hypothesized that adding zinc to the feed of heat-stressed broilers would improve their resilience to heat stress.
View Article and Find Full Text PDFJ Neurosci
October 2024
Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
Neuroinflammation can positively influence axon regeneration following injury in the central nervous system. Inflammation promotes the release of neurotrophic molecules and stimulates intrinsic proregenerative molecular machinery in neurons, but the detailed mechanisms driving this effect are not fully understood. We evaluated how microRNAs are regulated in retinal neurons in response to intraocular inflammation to identify their potential role in axon regeneration.
View Article and Find Full Text PDFiScience
August 2024
Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China.
Ovarian cancer stem cells (OCSCs) significantly impact the prognosis, chemoresistance, and treatment outcomes in OC. While ferroptosis has been proven effective against OCSCs, the intricate relationship between ferroptosis and OCSCs remains incompletely understood. Here, we enriched ovarian cancer stem-like cells (OCSLCs) through mammosphere culture, as an OCSC model.
View Article and Find Full Text PDFExp Mol Med
July 2024
Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
The senescence of alveolar type II (AT2) cells impedes self-repair of the lung epithelium and contributes to lung injury in the setting of idiopathic pulmonary fibrosis (IPF). Yes-associated protein 1 (YAP1) is essential for cell growth and organ development; however, the role of YAP1 in AT2 cells during pulmonary fibrosis is still unclear. YAP1 expression was found to be downregulated in the AT2 cells of PF patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!