Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The concept of electrical energy generation based on asymmetric chemical doping of single-walled carbon nanotube (SWNT) papers is presented. We explore 27 small, organic, electron-acceptor molecules that are shown to tune the output open-circuit voltage (V) across three types of pristine SWNT papers with varying (n,m) chirality distributions. A considerable enhancement in the observed V, from 80 to 440 mV, is observed for SWNT/molecule acceptor pairs that have molecular volume below 120 Å and lowest unoccupied molecular orbital (LUMO) energies centered around -0.8 eV. The electron transfer (ET) rate constants driving the V generation are shown to vary with the chirality-associated Marcus theory, suggesting that the energy gaps between SWNT and the LUMO of acceptor molecules dictate the ET process. When the ET rate constants and the maximum V are plotted versus the LUMO energy of the acceptor organic molecule, volcano-shaped dependencies, characteristic of the Marcus inverted region, are apparent for three distinct sources of SWNT papers with modes in diameter distributions of 0.95, 0.83, and 0.75 nm. This observation, where the ET driving force exceeds reorganization energies, allows for an estimation of the outer-sphere reorganization energies with values as low as 100 meV for the (8,7) SWNT, consistent with a proposed image-charge modified Born energy model. These results expand the fundamental understanding of ET transfer processes in SWNT and allow for an accurate calculation of energy generation through asymmetric doping for device applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.7b04314 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!