In this paper, a facile environmentally friendly method is introduced for in-situ synthesis and fabrication of cauliflower-like CuO nanoparticles on the polyester fabric to produce photo and biocatalytic activities with UV protection properties on polyester fabric. The ash of burnt leaves and stems of Seidlitzia rosmarinus plant called Keliab was used as a natural and nontoxic alkaline source for simultaneous synthesis of CuO nanoparticles and surface modification of polyester without using any other compounds. The images of field-emission scanning electron microscopy, patterns of energy-dispersive spectroscopy, UV-visible spectrum and X-ray diffraction confirmed successful synthesis and loading of CuO nanoparticles on the polyester fabric. The treated fabrics showed very good antibacterial activities toward two pathogen bacteria including Staphylococcus aureus as a Gram-positive and Escherichia coli as a Gram-negative bacteria with no adverse effects on human dermal fibroblasts based on MTT test. The treated fabrics confirmed significant photocatalytic activity for degradation of methylene blue under sunlight, self-cleaning properties under UV light and also UV protection properties. Further a colorant effect along with an improvement in the wettability and mechanical properties of the treated fabrics were indicated. Overall, this method can be applied as a clean route for producing photo and bio active textiles protecting against UV irradiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2017.09.021 | DOI Listing |
Int J Biol Macromol
January 2025
The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), College of Chemistry, Sichuan University, Chengdu 610064, China.
The development of bio-based flame retardants has garnered significant attention, however, significant challenges remain in achieving efficient flame retardancy and eco-friendly preparation methods. Herein, we propose a facile, atomic-efficient, and eco-friendly strategy for synthesizing a trinity chitosan-based flame retardant, phosphite-protonated chitosan (PCS). The chemical structure was systematically analyzed and the impact of varying degrees of protonation on the dissolution behavior and rheological properties were investigated.
View Article and Find Full Text PDFBiofabrication
January 2025
College of Textiles & Clothing, Qingdao University, 308 Ningxia Road, Qingdao, Qingdao, Shandong, 266071, CHINA.
The design and development of advanced surgical sutures with appropriate structure and abundant bio-functions are urgently required for the chronic wound closure and treatment. In this study, an integrated technique routine combining modified electrospinning with hot stretching process was proposed and implemented to fabricate poly(L-lactic acid) (PLLA) nanofiber sutures, and the Salvia miltiorrhiza Bunge-Radix Puerariae herbal compound (SRHC) was encapsulated into PLLA nanofibers during the electrospinning process to enrich the biofunction of as-generated sutures. All the PLLA sutures loading without or with SRHC were found to exhibit bead-free and highly-aligned nanofiber structure.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Orthodontics, Institute of Oral Health Science, Ajou University School of Medicine, Suwon, South Korea.
Background: The demand for orthodontic treatment using clear aligners has been gradually increasing because of their superior esthetics compared with conventional fixed orthodontic therapy. This study aimed to evaluate and compare the compressive strength of three-dimensional direct printing aligners (3DPA) with that of conventional thermo-forming aligners (TFA) to determine their clinical applicability. In the experimental group, the 3DPA material TC-85 (TC-85 full) was used to create angular protrusions called rectangular pressure areas (RPA).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mining and Petroleum Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
This study utilized grab and strip testing methods to examine the relationship between three weave structures-plain, twill, and satin-and their tensile strengths in both warp and weft directions. In addition, microplastic fiber (MPF) emissions from these three weave structures were quantified at different states of the laundry process using filtration and microscopy. The grab and strip tests revealed that twill- and satin-woven fabrics exhibited higher tensile strengths in the warp direction compared to the weft orientation.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore.
Photocatalytic conversion has emerged as a promising strategy for harnessing renewable solar energy in the valorization of plastic waste. However, research on the photocatalytic transformation of plastics into valuable nitrogen-containing chemicals remains limited. In this study, we present a visible-light-driven pathway for the conversion of polylactic acid (PLA) into alanine under mild conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!