Prediction of intrinsic surface wettability from first-principles offers great opportunities in probing new physics of natural phenomena and enhancing energy production or transport efficiency. We propose a general quantum mechanical approach to predict the macroscopic wettability of any solid crystal surfaces for different liquids directly through atomic-level density functional simulation. As a benchmark, the wetting characteristics of calcite crystal (10.4) under different types of fluids (water, hexane, and mercury), including either contact angle or spreading coefficient, are predicted and further validated with experimental measurements. A unique feature of our approach lies in its capability of capturing the interactions among various polar fluid molecules and solid surface ions, particularly their charge density difference distributions. Moreover, this approach provides insightful and quantitative predictions of complicated surface wettability alteration problems and wetting behaviors of liquid/liquid/solid triphase systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.7b02270 | DOI Listing |
J Prosthodont
January 2025
School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
Purpose: Ultra-high translucency zirconia (UT-Zr) is known for its high esthetic quality; however, its inert surface results in low hydrophilicity and surface energy (SE). To address this limitation, this study proposes an innovative zirconia heat treatment process (ZHTP) and aims to evaluate the effects of ZHTP on the surface characteristics of UT-Zr, offering a novel and practical approach for surface pretreatment in dental practice.
Material And Methods: The plate-shaped UT-Zr samples were fabricated.
Biomimetics (Basel)
January 2025
DENS-ia Research Group, Faculty of Health Sciences, Miguel de Cervantes European University, C/del Padre Julio Chevalier 2, 47012 Valladolid, Spain.
Treating the surfaces of dental implants in an alkaline medium allows us to obtain microstructures of sodium titanate crystals that favor the appearance of apatite in the physiological environment, producing osteoconductive surfaces. In this research, 385 discs made of titanium used in dental implants underwent different NaOH treatments with a 6M concentration at 600 °C and cooling rates of 20, 50, 75, and 115 °C/h. Using high-resolution electron microscopy, the microstructures were observed, and the different crystal sizes were determined and compared with control samples (those without biomimetic treatment).
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemistry and Biotechnology; School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
Despite their widespread utilization in biomedical applications, these synthetic materials can be susceptible to microbial contamination, potentially compromising their functionality and increasing the risk of infection in patients. In this study, molybdenum (Mo), an essential metal in biological systems, was investigated as a Mo-based cold-sprayed coating on poly(dimethylsiloxane) (PDMS) for its potential use as biocompatible and antimicrobial surfaces for biomedical applications. Various cold-spray parameters were employed in the fabrication of Mo-embedded PDMS surfaces to alter the surface structure of the substrate, Mo loading density, and embedding layer thickness.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanics, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, People's Republic of China.
Droplets impinging on sparse microgrooved polydimethylsiloxane (PDMS) surfaces with different solid fractions was experimentally investigated. First, wettability and stability of droplets on these surfaces was analyzed. The advancing and receding contact angles were found to have a large difference between in the longitudinal direction and in the transverse one, which could be attributed to the anisotropy of the micropatterned surfaces.
View Article and Find Full Text PDFLangmuir
January 2025
Chemistry and Structure of novel Materials, University of Siegen, Paul-Bonatz Strasse 9-11, 57068 Siegen, Germany.
The surface charge of metal oxides is an important property that significantly contributes to a wide range of phenomena, including adsorption, catalysis, and material science. The surface charge can be predicted by determining the isoelectric point (IEP) of a material and the pH of a solution. Although there have been several studies of the IEP of metal oxide (nano)particles, only a few have reported the IEP of metal oxide films.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!