Phosphorylation stoichiometry, or occupancy, is one element of phosphoproteomics that can add useful biological context (Gerber et al. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 6940-5). We previously developed a method to assess phosphorylation stoichiometry on a proteome-wide scale (Wu et al. Nat. Methods 2011, 8, 677-83). The stoichiometry calculation relies on identifying and measuring the levels of each nonphosphorylated counterpart peptide with and without phosphatase treatment. The method, however, is problematic in that low stoichiometry phosphopeptides can return negative stoichiometry values if measurement error is larger than the percent stoichiometry. Here, we have improved the stoichiometry method through the use of isobaric labeling with 10-plex TMT reagents. In this way, five phosphatase treated and five untreated samples are compared simultaneously so that each stoichiometry is represented by five ratio measurements with no missing values. We applied the method to determine basal stoichiometries of HCT116 cells growing in culture. With this method, we analyzed five biological replicates simultaneously with no need for phosphopeptide enrichment. Additionally, we developed a Bayesian model to estimate phosphorylation stoichiometry as a parameter confined to an interval between 0 and 1 implemented as an R/Stan script. Consequently, both point and interval estimates are consistent with the plausible range of values for stoichiometry. Finally, we report absolute stoichiometry measurements with credible intervals for 6772 phosphopeptides containing at least a single phosphorylation site.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6301010PMC
http://dx.doi.org/10.1021/acs.jproteome.7b00571DOI Listing

Publication Analysis

Top Keywords

phosphorylation stoichiometry
16
stoichiometry
12
isobaric labeling
8
phosphorylation
5
method
5
improved method
4
method determining
4
determining absolute
4
absolute phosphorylation
4
stoichiometry bayesian
4

Similar Publications

CD28 shapes T cell receptor signaling by regulating Lck dynamics and ZAP70 activation.

Front Immunol

January 2025

Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.

Introduction: T cell activation requires T cell receptor (TCR) engagement by its specific ligand. This interaction initiates a series of proximal events including tyrosine phosphorylation of the CD3 and TCRζ chains, recruitment, and activation of the protein tyrosine kinases Lck and ZAP70, followed by recruitment of adapter and signaling proteins. CD28 co-stimulation is also required to generate a functional immune response.

View Article and Find Full Text PDF

Neurofilaments (NFs) are multisubunit, bottlebrush-shaped intermediate filaments abundant in the axonal cytoskeleton. Each NF subunit contains a long intrinsically disordered tail domain, which protrudes from the NF core to form a "brush" surrounding each NF. Precisely how the tails' variable charge patterns and repetitive phosphorylation sites mediate their conformation within the brush remains an open question in axonal biology.

View Article and Find Full Text PDF
Article Synopsis
  • Protein phosphorylation is essential for disease regulation and drug development but poses significant analytical challenges due to its complexity and low detectability.
  • The Chip-DIA strategy combines a phosphoproteomic chip with advanced mass spectrometry to enable highly sensitive analysis of phosphorylation at the single-cell level.
  • This approach successfully identified unique phosphoproteomic profiles in lung cancer, helping to uncover potential targeted therapies for resistant cancer subtypes and supporting precision oncology.
View Article and Find Full Text PDF

A chlorotrimethylsilane (TMSCl)-mediated cascade phosphorylation and cycloisomerization of enynones with diphenylphosphine oxides is presented. This methodology enables the highly selective synthesis of monophosphorylated 2-pyrans and bisphosphorylated dihydropyrans through precise solvent-reagent stoichiometry control. The strategy demonstrated excellent functional group compatibility and high yields (up to 96%), providing facile access to structurally diverse phosphorylated heterocycles with potential applications in medicinal chemistry and materials science.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!