Phosphorylation stoichiometry, or occupancy, is one element of phosphoproteomics that can add useful biological context (Gerber et al. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 6940-5). We previously developed a method to assess phosphorylation stoichiometry on a proteome-wide scale (Wu et al. Nat. Methods 2011, 8, 677-83). The stoichiometry calculation relies on identifying and measuring the levels of each nonphosphorylated counterpart peptide with and without phosphatase treatment. The method, however, is problematic in that low stoichiometry phosphopeptides can return negative stoichiometry values if measurement error is larger than the percent stoichiometry. Here, we have improved the stoichiometry method through the use of isobaric labeling with 10-plex TMT reagents. In this way, five phosphatase treated and five untreated samples are compared simultaneously so that each stoichiometry is represented by five ratio measurements with no missing values. We applied the method to determine basal stoichiometries of HCT116 cells growing in culture. With this method, we analyzed five biological replicates simultaneously with no need for phosphopeptide enrichment. Additionally, we developed a Bayesian model to estimate phosphorylation stoichiometry as a parameter confined to an interval between 0 and 1 implemented as an R/Stan script. Consequently, both point and interval estimates are consistent with the plausible range of values for stoichiometry. Finally, we report absolute stoichiometry measurements with credible intervals for 6772 phosphopeptides containing at least a single phosphorylation site.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6301010 | PMC |
http://dx.doi.org/10.1021/acs.jproteome.7b00571 | DOI Listing |
Front Immunol
January 2025
Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.
Introduction: T cell activation requires T cell receptor (TCR) engagement by its specific ligand. This interaction initiates a series of proximal events including tyrosine phosphorylation of the CD3 and TCRζ chains, recruitment, and activation of the protein tyrosine kinases Lck and ZAP70, followed by recruitment of adapter and signaling proteins. CD28 co-stimulation is also required to generate a functional immune response.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720.
Neurofilaments (NFs) are multisubunit, bottlebrush-shaped intermediate filaments abundant in the axonal cytoskeleton. Each NF subunit contains a long intrinsically disordered tail domain, which protrudes from the NF core to form a "brush" surrounding each NF. Precisely how the tails' variable charge patterns and repetitive phosphorylation sites mediate their conformation within the brush remains an open question in axonal biology.
View Article and Find Full Text PDFFEBS J
December 2024
Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India.
Glyceraldehyde-3-phosphate-dehydrogenase (GAPDH; EC1.2.1.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Institute of Chemistry, Academia Sinica, Taipei, 115201, Taiwan.
Org Lett
October 2024
State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.
A chlorotrimethylsilane (TMSCl)-mediated cascade phosphorylation and cycloisomerization of enynones with diphenylphosphine oxides is presented. This methodology enables the highly selective synthesis of monophosphorylated 2-pyrans and bisphosphorylated dihydropyrans through precise solvent-reagent stoichiometry control. The strategy demonstrated excellent functional group compatibility and high yields (up to 96%), providing facile access to structurally diverse phosphorylated heterocycles with potential applications in medicinal chemistry and materials science.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!