Multiple approaches will be needed to reduce the atmospheric CO levels, which have been linked to the undesirable effects of global climate change. The electroreduction of CO driven by renewable energy is one approach to reduce CO emissions while producing chemical building blocks, but current electrocatalysts exhibit low activity and selectivity. Here, we report the structural and electrochemical characterization of a promising catalyst for the electroreduction of CO to CO: Au nanoparticles supported on polymer-wrapped multiwall carbon nanotubes. This catalyst exhibits high selectivity for CO over H : 80-92 % CO, as well as high activity: partial current density for CO as high as 160 mA cm . The observed high activity, originating from a high electrochemically active surface area (23 m g Au), in combination with the low loading (0.17 mg cm ) of the highly dispersed Au nanoparticles underscores the promise of this catalyst for efficient electroreduction of CO .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201700815 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!