Aims: Coronary artery disease (CAD) is a leading cause of morbidity and mortality in women and non-invasive testing for CAD in women can be more challenging than in men. This study compared the diagnostic performance of whole-heart dynamic 3D cardiovascular magnetic resonance (CMR) stress perfusion imaging in female and male patients with quantitative coronary angiography (QCA) and fractional flow reserve (FFR) as reference tests.

Methods And Results: Four hundred sixteen patients with suspected or known CAD were enrolled in five European centres. CMR imaging was performed prior to clinically indicated coronary angiography. QCA was performed in all patients and FFR in 357 of 416 patients. Whole-heart dynamic 3D CMR first-pass perfusion imaging was conducted at rest and during adenosine stress. All CMR analyses were operated by experienced investigators blinded to all clinical data. One hundred nineteen female and 297 male patients were included and successfully examined (mean age 65 ± 11 and 63 ± 11 years, respectively). FFR was performed in 106 female and 251 male patients. Sensitivity and specificity of whole-heart dynamic 3D CMR stress perfusion imaging were 89% (95% CI: 77-96) and 82% (95% CI: 70-90) in the female population and 83% (95% CI: 77-86) and 79% (95% CI: 71-86) in the male population relative to QCA (P = 0.474 and P = 0.83, P-values for comparison between genders). Sensitivity and specificity were 95% (95% CI: 82-99) and 84% (95% CI: 73-92) in the female population and 83% (95% CI: 76-89) and 82% (95% CI: 74-88) in the male population when using FFR as the reference (P = 0.134 and P = 0.936, P-values for comparison between genders). Diagnostic accuracy in females was 92% (95% CI: 85-96) and 86% (95% CI: 81-90) in males when using FFR as the reference. The prevalence of CAD as defined by FFR (<0.8) was 36% in females and 53% in males.

Conclusion: Whole-heart dynamic 3D CMR stress perfusion imaging has a high diagnostic accuracy for the detection of significant CAD irrespective of gender and is therefore a suitable non-invasive testing tool to detect myocardial ischaemia in both genders.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ehjci/jex160DOI Listing

Publication Analysis

Top Keywords

whole-heart dynamic
16
perfusion imaging
16
male patients
12
ffr reference
12
95%
11
magnetic resonance
8
coronary artery
8
artery disease
8
fractional flow
8
flow reserve
8

Similar Publications

Cardiac sex-difference functional studies have centred on measurements of twitch force and Ca dynamics. The energy expenditures from these two cellular processes: activation (Ca handling) and contraction (cross-bridge cycling), have not been assessed, and compared, between sexes. Whole-heart studies measuring oxygen consumption do not directly measure the energy expenditure of these activation-contraction processes.

View Article and Find Full Text PDF

Accurate Intramyocardial Hemorrhage Assessment with Fast, Free-running, Cardiac Quantitative Susceptibility Mapping.

Radiol Cardiothorac Imaging

December 2024

From the Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N Robertson Blvd, Pacific Theatres Bldg, Ste 400, Los Angeles, CA 90048 (Y.H., L.T.H., H.L.L., D.L., H. Han, A.G.C., H.J.Y.); Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, Ind (Y.H., X.G., X.Z., G.Y., G.A., S.F.C., K.P.V., B.S., D.P.S., K.Y., R.D.); Departments of Bioengineering (Y.H., X.Z., A.G.C.) and Statistics (H. Ho), University of California Los Angeles, Los Angeles, Calif; Academia Sinica, Institute of Statistical Science, Nankang, Taipei, Taiwan (H. Ho); Department of Surgery, Division of Neurosurgery, Mackay Memorial Hospital, Taipei, Taiwan (L.T.H.); Department of Medical Imaging, National Cheng Kung University Hospital, Tainan, Taiwan (H.Y.L.); Siemens Medical Solutions USA, Malvern, Pa (X.B., F.H.); and Department of Radiological Sciences, University of California Los Angeles David Geffen School of Medicine, Los Angeles, Calif (A.G.C.).

Purpose To evaluate the performance of a high-dynamic-range quantitative susceptibility mapping (HDR-QSM) cardiac MRI technique to detect intramyocardial hemorrhage (IMH) and quantify iron content using phantom and canine models. Materials and Methods A free-running whole-heart HDR-QSM technique for IMH assessment was developed and evaluated in calibrated iron phantoms and 14 IMH female canine models. IMH detection and iron content quantification performance of this technique was compared with the conventional iron imaging approaches, R2*(1/T2*) maps, using measurements from ex vivo imaging as the reference standard.

View Article and Find Full Text PDF

. The aim was to demonstrate a reliable method to test the function of the whole heart. .

View Article and Find Full Text PDF

Free-breathing 3D cardiac extracellular volume (ECV) mapping using a linear tangent space alignment (LTSA) model.

Magn Reson Med

February 2025

Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale University, New Haven, Connecticut, USA.

Purpose: To develop a new method for free-breathing 3D extracellular volume (ECV) mapping of the whole heart at 3 T.

Methods: A free-breathing 3D cardiac ECV mapping method was developed at 3 T. T mapping was performed before and after contrast agent injection using a free-breathing electrocardiogram-gated inversion recovery sequence with spoiled gradient echo readout.

View Article and Find Full Text PDF

Purpose: This study aims to show the viability of conducting three-dimensional (3D) myocardial perfusion quantification covering the entire heart using both GRE and bSSFP sequences with hyperpolarized HP001.

Methods: A GRE sequence and a bSSFP sequence, both with a stack-of-spirals readout, were designed and applied to three pigs. The images were reconstructed using C coil sensitivity maps measured in a phantom experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!