A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Highly Sensitive Piezocapacitive Sensor for Detecting Static and Dynamic Pressure Using Ion-Gel Thin Films and Conductive Elastomeric Composites. | LitMetric

Highly Sensitive Piezocapacitive Sensor for Detecting Static and Dynamic Pressure Using Ion-Gel Thin Films and Conductive Elastomeric Composites.

ACS Appl Mater Interfaces

School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul 06974, Republic of Korea.

Published: October 2017

A new class of simple and highly sensitive piezocapacitive sensors that are capable of detecting static and dynamic pressure changes is reported. The pressure sensor structure is formed by vertically sandwiching a sandpaper-molded carbon nanotube/poly(dimethylsiloxane) composite (CPC) dielectric layer between two ion-gel thin film electrodes. Such a capacitive sensor system enables the distinguishable detection of directional movement of applied pressure as well as static pressure variation by modulating ion distribution in the ion-gel thin films. The resulting capacitive pressure sensors exhibit high sensitivity (9.55 kPa), high durability, and low operating voltage (0.1 V). Our proposed pressure sensors are successfully applied as potential platforms for monitoring human physiological signals and finger sliding motions in order to demonstrate their capability for practical usage. The outstanding sensor performance of the pressure sensors can permit applications in wearable electronic devices for human-machine connecting platforms, health care monitoring systems, and artificial skin.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b11700DOI Listing

Publication Analysis

Top Keywords

ion-gel thin
12
pressure sensors
12
highly sensitive
8
sensitive piezocapacitive
8
detecting static
8
static dynamic
8
pressure
8
dynamic pressure
8
thin films
8
sensor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!