Hydrodynamics and sediment transport are key physical processes contributing to habitat structure within the marine environment. Coastal development that results in the alteration of these processes (e.g., changing water flushing and/or sedimentation rates) can have detrimental impacts on sensitive systems. This is a current, relevant issue in Qatar as its coastal regions continue to be developed, not only around the capital of Doha, but in many areas around this Arabian Gulf peninsula. The northeastern Qatari coast is comprised of diverse and sensitive flora and fauna such as seagrass and macroalgae meadows, coral reefs and patches, turtles, and dugongs that tolerate harsh environmental conditions. In the near future, this area may see a rise in anthropogenic activity in the form of coastal development projects. These projects will add to existing natural stresses, such as high temperature, high salinity, and low rates of precipitation. Consequently, there is a need to characterize this area and assess the potential impacts that these anthropogenic activities may have on the region. In the present study, a novel sediment transport model is described and used to demonstrate the potential impact of altering hydrodynamics and subsequent sediment transport along the northeastern Qatar nearshore marine environment. The developed models will be tested using potential scenarios of future anthropogenic activities forecasted to take place in the area. The results will show the effects on water and sediment behavior and provide a scientific approach for key stakeholders to make decisions with respect to the management of the considered coastal zone. Furthermore, it provides a tool and framework that can be utilized in environmental impact assessment and associated hydrodynamic studies along other areas of the Qatari coastal zone. Integr Environ Assess Manag 2018;14:240-251. © 2017 SETAC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ieam.1992 | DOI Listing |
Mar Pollut Bull
January 2025
Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, China. Electronic address:
The temporal variation and transport of Cs in the Beibu Gulf (BG) are still poorly understood. Here we measured Cs concentrations in the BG water column and surface sediments during 2022. We found that Cs in the BG water column was controlled by the movement and mixing of local water masses.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Earth and Environmental System Sciences, Department of Oceanography, Pukyong National University, 45 Yongso-ro, Nam-gu, 48513, Busan, Republic of Korea.
This study explores carbon sequestration in South Korea's riverine wetlands, focusing on the four major rivers: Han, Yeongsan, Geum, and Nakdong. Field data from the Yeongsan River wetland, including 3D topography surveys, grainsize analyses, and loss-on-ignition measurements, were used to assess carbon stocks and their environmental drivers. The Yeongsan River was selected as a representative site due to its geomorphological, hydrological, and climatic similarities with the other three major rivers, which influence sediment transport and carbon dynamics.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Department of Environmental Science, American University, 4400 Massachusetts Ave., NW, Washington, DC 20016, United States of America; Department of Environmental Science and Studies, Washington College, Chestertown, MD 21620, United States of America.
Saipan, the largest and most populated island of the Commonwealth of the Northern Mariana Islands, has coastal areas with high submarine groundwater discharge (SGD) and heavy metal pollution of sediments. Here, we measured metal concentrations in coastal Saipan groundwater and surface water and explored spatial correlations with pollution sources. Concentrations of Cd, Pb, Cu, and Zn were highest in inland wells, with 3 wells exceeding USEPA guidelines for Cu or Pb.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Petroleum Engineering, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India. Electronic address:
Naturally occurring gas clathrates are a significant methane resource-the primary component of natural gas, regarded as the cleanest hydrocarbon and a key feedstock for producing gray and blue hydrogen. Despite the global abundance of gas hydrate reserves, extraction via depressurization has yet to achieve commercially viable production rates. The primary limitation lies in the low permeability of hydrate-bearing sediments, where solid clathrates obstruct porous pathways, hindering dissociation and slowing gas recovery.
View Article and Find Full Text PDFJ Environ Manage
December 2024
College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi Province, China; Institute of Soil and Water Conservation, Chinese Academy and Sciences and Ministry of Water Resources, Yangling, 712100, Shaanxi Province, China.
The middle reaches of the Yellow River (MRYR) in China are some of the most severely eroded areas in the world. Knowledge of the changes in sediment yield in the MRYR is of great significance for understanding the impact of human activities on soil erosion and sediment transport. Using data from the MRYR and 13 sub-basins, this study aims to evaluate the actual contributions of human activities to sediment yields and to examine whether the widely used Mann-Kendall test has underestimated this contribution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!