Purpose: The goal of this study was to devise a gradient system for MRI in humans that reconciles cutting-edge gradient strength with rapid switching and brings up the duty cycle to 100% at full continuous amplitude. Aiming to advance neuroimaging and short-T techniques, the hardware design focused on the head and the extremities as target anatomies.

Methods: A boundary element method with minimization of power dissipation and stored magnetic energy was used to design anatomy-targeted gradient coils with maximally relaxed geometry constraints. The design relies on hollow conductors for high-performance cooling and split coils to enable dual-mode gradient amplifier operation. With this approach, strength and slew rate specifications of either 100 mT/m with 1200 mT/m/ms or 200 mT/m with 600 mT/m/ms were reached at 100% duty cycle, assuming a standard gradient amplifier and cooling unit.

Results: After manufacturing, the specified values for maximum gradient strength, maximum switching rate, and field geometry were verified experimentally. In temperature measurements, maximum local values of 63°C were observed, confirming that the device can be operated continuously at full amplitude. Testing for peripheral nerve stimulation showed nearly unrestricted applicability in humans at full gradient performance. In measurements of acoustic noise, a maximum average sound pressure level of 132 dB(A) was determined. In vivo capability was demonstrated by head and knee imaging. Full gradient performance was employed with echo planar and zero echo time readouts.

Conclusion: Combining extreme gradient strength and switching speed without duty cycle limitations, the described system offers unprecedented options for rapid and short-T imaging. Magn Reson Med 79:3256-3266, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.26954DOI Listing

Publication Analysis

Top Keywords

duty cycle
16
gradient strength
12
gradient
9
rapid short-t
8
short-t imaging
8
imaging full
8
gradient amplifier
8
full gradient
8
gradient performance
8
full
5

Similar Publications

This research presents an innovative design for a non-isolated DC-DC converter, which utilizes a single switch in a high step-up configuration. The key element of this design is a three-winding coupled inductor (TWCI), which plays a crucial role in achieving a substantial voltage increase. By utilizing a low duty cycle, the converter minimizes conduction losses in the power switch, resulting in enhanced efficiency.

View Article and Find Full Text PDF

Traditional beat frequency quartz-enhanced photoacoustic spectroscopy (BF-QEPAS) are limited by short energy accumulation times and the necessity of a decay period, leading to weaker signals and longer measurement cycles. Herein, we present a novel optomechanical energy-enhanced (OEE-) BF-QEPAS technique for fast and sensitive gas sensing. Our approach employs periodic pulse-width modulation (PWM) of the laser signal with an optimized duty cycle, maintaining the quartz tuning fork's (QTF) output at a stable steady-state level by applying stimulus signals at each half-period and allowing free vibration in alternate half-periods to minimize energy dissipation.

View Article and Find Full Text PDF

The world is moving towards the utilization of hydrogen vehicle technology because its advantages are uniformity in power production, more efficiency, and high durability when compared to fossil fuels. So, in this work, the Proton Exchange Membrane Fuel Stack (PEMFS) device is selected for producing the energy for the hydrogen vehicle. The merits of this fuel technology are the possibility of operating less source temperature, and more suitability for stationery and transportation applications.

View Article and Find Full Text PDF

Background: Exercise-induced hypoalgesia (EIH) is characterized by a reduction in pain perception and sensitivity across both exercising and non-exercising body parts during and after a single bout of exercise. EIH is mediated through central and peripheral mechanisms; however, the specific effect of muscle contraction alone on EIH remains unclear. Moreover, previous studies on electrical muscle stimulation (EMS) have primarily focused on local analgesic effects, often relying on subjective pain reports.

View Article and Find Full Text PDF

Multiport converters are the most reliable and integral component for latest renewable source integration with multiple inputs. This article is one among the kind, which proposes a novel Coupled Inductor based Four Port topology Multiport Converter (CI-FP-MPC) for integrating multiple PV sources with different voltages. The adoption of coupled inductor contributes an increased voltage gain with reduced stress on the switches and diodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!