AI Article Synopsis

  • The study aimed to assess how effective electron paramagnetic resonance (EPR) oximetry is for monitoring oxygen levels in wounds treated with a specific peptide (hCAP-18/LL37) in diabetic mice.
  • Diabetic mice of different ages (7 and 12 weeks old) with varying levels of blood vessel disease were used, and EPR oximetry monitored the oxygenation in the treated wounds, showing notable differences between the age groups.
  • Results indicated that younger treated mice exhibited improved wound reoxygenation, less hypoxia, and faster healing compared to untreated mice, suggesting EPR oximetry could be a useful measure for evaluating wound treatment effectiveness.

Article Abstract

Purpose: To investigate the value of electron paramagnetic resonance oximetry to follow oxygenation in wounds treated by a plasmid-encoding host defense peptide hCAP-18/LL37.

Methods: Flaps were created on diabetic mice (7- or 12-week-old db/db mice) presenting different levels of microangiopathy. The hCAP-18/LL37-encoding plasmids were administered in wounds by electroporation. Low-frequency electron paramagnetic resonance oximetry using lithium phthalocyanine as the oxygen sensor was used to monitor wound oxygenation in flaps during the healing process. Flaps were analyzed by immunohistochemistry to assess hypoxia and cell proliferation. Kinetics of closure was also assessed in excisional skin wounds.

Results: A reoxygenation of the flap was observed during the healing process in the 7-week-old db/db treated mice, but not in the untreated mice and the 12-week-old mice. Histological studies demonstrated less hypoxic regions and higher proportion of proliferating cells in hCAP-18/LL37-treated flaps in the 7-week-old db/db treated mice compared with untreated mice. Consistently, the kinetics of excisional wound closure was improved by hCAP-18/LL37 treatment in the 7-week-old db/db but not in the 12-week-old mice.

Conclusions: Oxygenation measured by electron paramagnetic resonance oximetry is a promising biomarker of response to treatments designed to modulate wound oxygenation. Magn Reson Med 79:3267-3273, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.26956DOI Listing

Publication Analysis

Top Keywords

wound oxygenation
12
electron paramagnetic
12
paramagnetic resonance
12
resonance oximetry
12
7-week-old db/db
12
biomarker response
8
mice 12-week-old
8
healing process
8
db/db treated
8
treated mice
8

Similar Publications

Mitochondria as a Therapeutic Target: Focusing on Traumatic Brain Injury.

J Integr Neurosci

January 2025

Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.

Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.

View Article and Find Full Text PDF

Polyphenolic Hispolon Derived from Medicinal Mushrooms of the and Genera Promotes Wound Healing in Hyperglycemia-Induced Impairments.

Nutrients

January 2025

Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Yanpu Township 90741, Taiwan.

: This study investigated the wound-healing potential of hispolon, a polyphenolic pigment derived from medicinal mushrooms, under diabetic conditions using both in vitro and in vivo models. : In the in vitro assays, L929 fibroblast cells exposed to high glucose (33 mmol/L) were treated with hispolon at concentrations of 2.5, 5, 7.

View Article and Find Full Text PDF

Nanofibrous dressing materials with an antitumor function can potentially inhibit recurrence of melanoma following the surgical excision of skin tumors. In this study, hydrolyzed polyacrylonitrile (hPAN) nanofibers biofunctionalized with L-carnosine (CAR) and loaded with bio (CAR)-synthesized zinc oxide (ZnO) nanoparticles, ZnO/CAR-hPAN (hereafter called ZCPAN), were employed to develop an antimelanoma wound dressing. Inspired by the formulation of the commercial wound healing Zn-CAR complex, i.

View Article and Find Full Text PDF

The autologous reconstruction of the female breast using a microsurgical DIEP flap is a reliable and safe method. To detect impairments early and preserve the microvascular flap through timely revision, a better understanding of physiologic perfusion dynamics is necessary. This exploratory study examines changes in microcirculation in free DIEP flaps within the first 72 h after vascular anastomosis using laser Doppler flowmetry and white-light spectrophotometry.

View Article and Find Full Text PDF

Something Old and Something New-A Pilot Study of Shrinkage and Modern Imaging Devices.

Life (Basel)

December 2024

Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.

Shrinkage, a heat-induced process, reorganizes collagen fibers, thereby reducing wound surface area. This technique, commonly applied in surgeries like periareolar mastopexy and skin grafting, is well-established. Despite its widespread use, modern imaging has recently enabled detailed observation of shrinkage's effects on tissue temperature and oxygenation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!