Background: Autosomal dominant polycystic disease (ADPKD) often results in renal failure. Recently, allelic influences of PKD1 mutation types on renal survival were extensively investigated. Here, we analyzed integrated influences of PKD1 mutation types and positions on renal survival.
Methods: We included 338 (82 pedigrees) and 72 (12 pedigrees) patients with PKD1 and PKD2 mutations, respectively, identified through comprehensive gene analysis of 101 probands with ADPKD. Genetic testing was performed using next-generation sequencing, long-range PCR, and multiplex ligation-dependent probe amplification. Pathogenic mutations were identified by a software package-integrated seven databases and provided access to five cloud-based computing systems.
Results: Mean renal survivals of carriers with PKD1 non-truncating-type mutations at positions upstream of G-protein-coupled receptor proteolytic site (GPS-upstream domain), transmembrane domain, or cytoplasmic C-terminal tail (CTT) domain were 70.2, 67.0, and 50.1 years, respectively (P < 0.0001); renal survival was shorter for mutation positions closer to CTT domain, suggesting its crucial role in renal prognosis. Furthermore, in truncating-type mutations, strong inactivation is anticipated on nucleotides downstream from the mutation site, implying CTT domain inactivation irrespective of mutation site. Shorter mean renal survival was found for PKD1 truncating-type than non-truncating-type mutation carriers (P = 0.0348); mean renal survival was not different between PKD1 3'- and 5'-region truncating-type mutation carriers (P = 0.4375), but was shorter in PKD1 3'-region than in 5'-region non-truncating-type mutation carriers (P = 0.0014). Variable strength of CTT domain inactivation might account for these results.
Conclusions: Aforementioned findings indicate that CTT domain's crucial role in renal prognosis needs further investigation by larger studies (ClinicalTrials.gov; NCT02322385).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5838153 | PMC |
http://dx.doi.org/10.1007/s10157-017-1477-7 | DOI Listing |
Int J Biol Macromol
January 2025
College of Life Science, Northeast Agricultural University, Harbin 150030, China. Electronic address:
Under salt stress, plasma membrane proteins regulate ion homeostasis and the balance between reactive oxygen species (ROS). In this study, we investigated the functions of two small membrane proteins-MsRCI2B (tailless) and MsRCI2E (tailed)-encoded by the RCI2 (Rare Cold Inducible 2) gene family in Medicago sativa (alfalfa). We identified the distinct subcellular localization and expression patterns of these proteins under salt stress.
View Article and Find Full Text PDFJ Med Chem
January 2025
Zealand Pharma A/S, Sydmarken 11, 2860 Søborg, Denmark.
Human glucagon-like peptide-2 (hGLP-2) receptor agonists have a benefit for the treatment of short bowel syndrome (SBS) and potentially other intestinal diseases (e.g., IBD).
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical, Biology College of Chemistry, Nankai University, Tianjin 300071, China.
PGLa, an antimicrobial peptide (AMP), primarily exerts its antibacterial effects by disrupting bacterial cell membrane integrity. Previous theoretical studies mainly focused on the binding mechanism of PGLa with membranes, while the mechanism of water pore formation induced by PGLa peptides, especially the role of structural flexibility in the process, remains unclear. In this study, using all-atom simulations, we investigated the entire process of membrane deformation caused by the interaction of PGLa with an anionic cell membrane composed of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG).
View Article and Find Full Text PDFDev Reprod
December 2024
Carbon-Neutral Resources Research Center, Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Korea.
Lutropin/choriogonadotropin receptor (LH/CGR) is a member of the G protein-coupled receptor superfamily. LH/CGRs in fish and mammalian species have been reported to contain naturally occurring, constitutively activating, and inactivating mutations in highly conserved regions. The present study was designed to determine the functional aspect of eel LH/CGR signal transduction.
View Article and Find Full Text PDFNat Commun
January 2025
Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
Ubiquitin-specific protease 18 (USP18) is a multifunctional cysteine protease primarily responsible for deconjugating the interferon-inducible ubiquitin-like modifier ISG15 from protein substrates. Here, we report the design and synthesis of activity-based probes (ABPs) that incorporate unnatural amino acids into the C-terminal tail of ISG15, enabling the selective detection of USP18 activity over other ISG15 cross-reactive deubiquitinases (DUBs) such as USP5 and USP14. Combined with a ubiquitin-based DUB ABP, the USP18 ABP is employed in a chemoproteomics screening platform to identify and assess inhibitors of DUBs including USP18.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!