Purpose: Single-energy low tube potential (SE-LTP) and dual-energy virtual monoenergetic (DE-VM) CT images both increase the conspicuity of hepatic lesions by increasing iodine signal. Our purpose was to compare the conspicuity of proven liver lesions, artifacts, and radiologist preferences in dose-matched SE-LTP and DE-VM images.

Methods: Thirty-one patients with 72 proven liver lesions (21 benign, 51 malignant) underwent full-dose contrast-enhanced dual-energy CT (DECT). Half-dose images were obtained using single tube reconstruction of the dual-source SE-LTP projection data (80 or 100 kV), and by inserting noise into dual-energy projection data, with DE-VM images reconstructed from 40 to 70 keV. Three blinded gastrointestinal radiologists evaluated half-dose SE-LTP and DE-VM images, ranking and grading liver lesion conspicuity and diagnostic confidence (4-point scale) on a per-lesion basis. Image quality (noise, artifacts, sharpness) was evaluated, and overall image preference was ranked on per-patient basis. Lesion-to-liver contrast-to-noise ratio (CNR) was compared between techniques.

Results: Mean lesion size was 1.5 ± 1.2 cm. Across the readers, the mean conspicuity ratings for 40, 45, and 50 keV half-dose DE-VM images were superior compared to other half-dose image sets (p < 0.0001). Per-lesion diagnostic confidence was similar between half-dose SE-LTP compared to half-dose DE-VM images (p ≥ 0.05; 1.19 vs. 1.24-1.32). However, SE-LTP images had less noise and artifacts and were sharper compared to DE-VM images less than 70 keV (p < 0.05). On a per-patient basis, radiologists preferred SE-LTP images the most and preferred 40-50 keV the least (p < 0.0001). Lesion CNR was also higher in SE-LTP images than DE-VM images (p < 0.01).

Conclusion: For the same applied dose level, liver lesions were more conspicuous using DE-VM compared to SE-LTP; however, SE-LTP images were preferred more than any single DE-VM energy level, likely due to lower noise and artifacts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5886842PMC
http://dx.doi.org/10.1007/s00261-017-1327-9DOI Listing

Publication Analysis

Top Keywords

de-vm images
16
proven liver
12
liver lesions
12
dual-energy virtual
8
virtual monoenergetic
8
se-ltp de-vm
8
projection data
8
conspicuity
5
de-vm
5
images
5

Similar Publications

Levels of alertness are closely linked with human behavior and cognition. However, while functional magnetic resonance imaging (fMRI) allows for investigating whole-brain dynamics during behavior and task engagement, concurrent measures of alertness (such as EEG or pupillometry) are often unavailable. Here, we extract a continuous, time-resolved marker of alertness from fMRI data alone.

View Article and Find Full Text PDF

We developed a novel dual-energy (DE) virtual monochromatic (VM) very-deep super-resolution (VDSR) method with an unsharp masking reconstruction algorithm (DE-VM-VDSR) that uses projection data to improve the nodule contrast and reduce ripple artifacts during chest digital tomosynthesis (DT). For estimating the residual errors from high-resolution and multiscale VM images from the projection space, the DE-VM-VDSR algorithm employs a training network (mini-batch stochastic gradient-descent algorithm with momentum) and a hybrid super-resolution (SR) image [simultaneous algebraic reconstruction technique (SART) total-variation (TV) first-iterative shrinkage-thresholding algorithm (FISTA); SART-TV-FISTA] that involves subjective reconstruction with bilateral filtering (BF) [DE-VM-VDSR with BF]. DE-DT imaging was accomplished by pulsed X-ray exposures rapidly switched between low (60 kV, 37 projection) and high (120 kV, 37 projection) tube-potential kVp by employing a 40° swing angle.

View Article and Find Full Text PDF

Purpose: Single-energy low tube potential (SE-LTP) and dual-energy virtual monoenergetic (DE-VM) CT images both increase the conspicuity of hepatic lesions by increasing iodine signal. Our purpose was to compare the conspicuity of proven liver lesions, artifacts, and radiologist preferences in dose-matched SE-LTP and DE-VM images.

Methods: Thirty-one patients with 72 proven liver lesions (21 benign, 51 malignant) underwent full-dose contrast-enhanced dual-energy CT (DECT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!