What Mn K spectroscopy reveals concerning the oxidation states of the Mn cluster in photosystem II.

Phys Chem Chem Phys

Research School of Chemistry, College of Physical & Mathematical Sciences, College of Science, Australian National University, Canberra, ACT 0200, Australia.

Published: October 2017

The oxygen evolving complex, (OEC) in Photosystem II contains a MnCa cluster and catalyses oxidation of water to molecular oxygen and protons, the most energetically demanding reaction in nature. The catalytic mechanism remains unresolved and the precise Mn oxidation levels through which the cluster cycles during functional turnover are controversial. Two proposals for these redox levels exist; the 'high' and 'low' oxidation state paradigms, which differ systematically by two oxidation equivalents throughout the redox accumulating catalytic S state cycle (states S…S). Presently the 'high' paradigm is more favored. For S the assumed mean redox levels of Mn are 3.5 (high) and 3.0 (low) respectively. Mn K region X-ray spectroscopy has been extensively used to examine the OEC Mn oxidation levels, with Kβ emission spectroscopy increasingly the method of choice. Here we review the results from application of this and closely related techniques to PS II, building on our earlier examination of these and other data on the OEC oxidation states (Pace et al., Dalton Trans., 2012, 41, 11145). We compare the most recent results with a range of earlier Mn Kβ experiments on the photosystem and related model Mn systems. New analyses of these data are given, highlighting certain key spectral considerations which appear not to have been sufficiently appreciated earlier. These show that the recent and earlier PS II Kβ results have a natural internal consistency, leading to the strong conclusion that the low paradigm oxidation state assignment for the functional OEC is favoured.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp04797eDOI Listing

Publication Analysis

Top Keywords

oxidation
8
oxidation states
8
oxidation levels
8
redox levels
8
oxidation state
8
oec oxidation
8
earlier kβ
8
spectroscopy reveals
4
reveals concerning
4
concerning oxidation
4

Similar Publications

The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.

View Article and Find Full Text PDF

Beneficial Effects of Pomegranate Extracts for Benign Gynecologic Disorders.

Reprod Sci

December 2024

Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Re-search, Johns Hopkins Medicine, Baltimore, MD, 21205, USA.

Pomegranate (Punica granatum) is a widely cultivated fruit historically recognized for its health benefits and is regarded as a nutritional powerhouse. Pomegranate has a unique composition of bioactive compounds including hydrolysable tannins, anthocyanins, and other polyphenolic components. Of those, punicalagin and its subsequent metabolites are the most extensively studied, demonstrating antioxidant, anti-inflammatory, anti-cancer, and anti-nociceptive activity.

View Article and Find Full Text PDF

Bufalin Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Macrophage Pyroptosis via P62 Pathway.

J Cardiovasc Transl Res

December 2024

Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.

Bufalin, which is isolated from toad venom, exerts positive effects on hearts under pathological circumstance. We aimed to investigate the effects and mechanisms of bufalin on myocardial I/R injury. In vivo, bufalin ameliorated myocardial I/R injury, which characteristics with better ejection function, decreased infarct size and less apoptosis.

View Article and Find Full Text PDF

The outer mitochondrial membrane protein known as mitoNEET was discovered when it was labeled by a photoaffinity derivative of the anti-diabetes medication, pioglitazone. The biological role for mitoNEET and its specific mechanism for achieving this remains an active subject for research. There is accumulating evidence suggesting that mitoNEET could be a component of mitochondrial FeS cofactor biogenesis.

View Article and Find Full Text PDF

Preliminary study on the potential damage of cigarette smoke extract in 3D human chondrocyte culture.

In Vitro Cell Dev Biol Anim

December 2024

Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INRLGII), Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, 14389, Mexico City, Mexico.

Osteoarthritis (OA) is a chronic degenerative disease characterized by the progressive loss of articular cartilage. The role of cigarette smoke (CS) in OA is debated, with some studies suggesting a protective effect while others indicate it may pose a risk. Our preliminary findings suggest a link between smoking in young adults and severe knee OA, though the extent of this contribution is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!