Large-scale intrinsic brain systems have been identified for exteroceptive senses (e.g., sight, hearing, touch). We introduce an analogous system for representing sensations from within the body, called interoception, and demonstrate its relation to regulating peripheral systems in the body, called allostasis. Employing the recently introduced Embodied Predictive Interoception Coding (EPIC) model, we used tract-tracing studies of macaque monkeys, followed by two intrinsic functional magnetic resonance imaging samples ( = 280 and = 270) to evaluate the existence of an intrinsic allostatic/interoceptive system in the human brain. Another sample ( = 41) allowed us to evaluate the convergent validity of the hypothesized allostatic/interoceptive system by showing that individuals with stronger connectivity between system hubs performed better on an implicit index of interoceptive ability related to autonomic fluctuations. Implications include insights for the brain's functional architecture, dissolving the artificial boundary between mind and body, and unifying mental and physical illness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5624222PMC
http://dx.doi.org/10.1038/s41562-017-0069DOI Listing

Publication Analysis

Top Keywords

body called
8
allostatic/interoceptive system
8
system
5
evidence large-scale
4
large-scale brain
4
brain system
4
system supporting
4
supporting allostasis
4
allostasis interoception
4
interoception humans
4

Similar Publications

Immortalization of Mesenchymal Stem Cells for Application in Regenerative Medicine and Their Potential Risks of Tumorigenesis.

Int J Mol Sci

December 2024

Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.

Regenerative medicine utilizes stem cells to repair damaged tissues by replacing them with their differentiated cells and activating the body's inherent regenerative abilities. Mesenchymal stem cells (MSCs) are adult stem cells that possess tissue repair and regenerative capabilities and immunomodulatory properties with a much lower risk of tumorigenicity, making them a focus of numerous clinical trials worldwide. MSCs primarily exert their therapeutic effects through paracrine effects via secreted factors, such as cytokines and exosomes.

View Article and Find Full Text PDF

Stereotactic body radiotherapy has been established as a viable treatment option for inoperable early-stage non-small cell lung cancer or secondary lesions mainly in oligoprogressive/oligometastatic scenarios. Treating lesions in the so-called "no flight zone" has always been challenging and conflicting data never cleared how to safely treat these lesions. This is truer considering ultra-central lesions, i.

View Article and Find Full Text PDF

Thermoregulation: When cooling cools and heating heats.

Curr Biol

January 2025

Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:

Body temperature regulation in endotherms requires warming the body when ambient temperatures are low and cooling the body when they are high. Now, neural circuitry that can achieve the opposite has been identified - a phenomenon called thermoregulatory inversion.

View Article and Find Full Text PDF

Over the past 20-30 years, numerous studies have expanded our understanding of the connective components within the human musculoskeletal system. The term "fascia" and, more specifically, the "fascial system" encompass a variety of connective tissues that perform multiple functions. Given the extensive scope of the topic of fascia and the fascial system, which cannot be fully addressed in a single article, this work will focus specifically on the role of fascia in tension transmission (mechanotransduction).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!