Morphogen gradients direct the spatial patterning of developing embryos; however, the mechanisms by which these gradients are interpreted remain elusive. Here we used lattice light-sheet microscopy to perform in vivo single-molecule imaging in early embryos of the transcription factor Bicoid that forms a gradient and initiates patterning along the anteroposterior axis. In contrast to canonical models, we observed that Bicoid binds to DNA with a rapid off rate throughout the embryo such that its average occupancy at target loci is on-rate-dependent. We further observed Bicoid forming transient "hubs" of locally high density that facilitate binding as factor levels drop, including in the posterior, where we observed Bicoid binding despite vanishingly low protein levels. We propose that localized modulation of transcription factor on rates via clustering provides a general mechanism to facilitate binding to low-affinity targets and that this may be a prevalent feature of other developmental transcription factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666676 | PMC |
http://dx.doi.org/10.1101/gad.305078.117 | DOI Listing |
Biophys J
August 2024
Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada. Electronic address:
Transcription factors play an essential role in pattern formation during early embryo development, generating a strikingly fast and precise transcriptional response that results in sharp gene expression boundaries. To characterize the steps leading up to transcription, we performed a side-by-side comparison of the nuclear dynamics of two morphogens, a transcriptional activator, Bicoid (Bcd), and a transcriptional repressor, Capicua (Cic), both involved in body patterning along the anterior-posterior axis of the early Drosophila embryo. We used a combination of fluorescence recovery after photobleaching, fluorescence correlation spectroscopy, and single-particle tracking to access a wide range of dynamical timescales.
View Article and Find Full Text PDFDevelopment
February 2024
Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
Morphogen gradients provide essential positional information to gene networks through their spatially heterogeneous distribution, yet how they form is still hotly contested, with multiple models proposed for different systems. Here, we focus on the transcription factor Bicoid (Bcd), a morphogen that forms an exponential gradient across the anterior-posterior (AP) axis of the early Drosophila embryo. Using fluorescence correlation spectroscopy we find there are spatial differences in Bcd diffusivity along the AP axis, with Bcd diffusing more rapidly in the posterior.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2023
Department of Physics, École Normale Supérieure, Paris 75005, France.
Cytoplasmic flows are widely emerging as key functional players in development. In early embryos, flows drive the spreading of nuclei across the embryo. Here, we combine hydrodynamic modeling with quantitative imaging to develop a two-fluid model that features an active actomyosin gel and a passive viscous cytosol.
View Article and Find Full Text PDFbioRxiv
March 2023
École Normale Supérieure, 75005 Paris, France.
Cytoplasmic flows are widely emerging as key functional players in development. In early embryos, flows drive the spreading of nuclei across the embryo. Here, we combine hydrodynamic modeling with quantitative imaging to develop a two-fluid model that features an active actomyosin gel and a passive viscous cytosol.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2022
Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France.
The Bridging Integrator 1 (BIN1) gene is a major susceptibility gene for Alzheimer's disease (AD). Deciphering its pathophysiological role is challenging due to its numerous isoforms. Here we observed in Drosophila that human BIN1 isoform1 (BIN1iso1) overexpression, contrary to human BIN1 isoform8 (BIN1iso8) and human BIN1 isoform9 (BIN1iso9), induced an accumulation of endosomal vesicles and neurodegeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!