A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Understanding Chylomicron Retention Disease Through Sar1b Gtpase Gene Disruption: Insight From Cell Culture. | LitMetric

Understanding Chylomicron Retention Disease Through Sar1b Gtpase Gene Disruption: Insight From Cell Culture.

Arterioscler Thromb Vasc Biol

From the CHU Sainte-Justine Research Centre (A.T.S., M.L.K., E.D., C.D., C.G., S.S., E.L.), Department of Nutrition (M.L.K., S.S., E.L.), and Department of Pediatrics (C.D.), Université de Montréal, Quebec, Canada; Division of Gastroenterology, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada (E.S.); and Centre de recherche Rhône-Alpes en nutrition humaine, Hôpital Edouard-Herriot, Université de Lyon 1, France (N.P.).

Published: December 2017

Background: Understanding the specific mechanisms of rare autosomal disorders has greatly expanded insights into the complex processes regulating intestinal fat transport. Sar1B GTPase is one of the critical proteins governing chylomicron secretion by the small intestine, and its mutations lead to chylomicron retention disease, despite the presence of Sar1A paralog.

Objective: The central aim of this work is to examine the cause-effect relationship between Sar1B expression and chylomicron output and to determine whether Sar1B is obligatory for normal high-density lipoprotein biogenesis.

Approach And Results: The gene was totally silenced in Caco-2/15 cells using the zinc finger nuclease technique. deletion resulted in significantly decreased secretion of triglycerides (≈40%), apolipoprotein B-48 (≈57%), and chylomicron (≈34.5%). The absence of expected chylomicron production collapse may be because of the compensatory elevation observed in our experiments. Therefore, a double knockout of and was engineered in Caco-2/15 cells, which led to almost complete inhibition of triglycerides, apolipoprotein B-48, and chylomicron output. Further experiments with labeled cholesterol revealed the downregulation of high-density lipoprotein biogenesis in cells deficient in SAR1B or with the double knockout of the 2 SAR1 paralogs. Similarly, there was a fall in the movement of labeled cholesterol from cells to basolateral medium containing apolipoprotein A-I, thereby limiting newly synthesized high-density lipoprotein in genetically modified cells. The decreased cholesterol efflux was associated with impaired expression of ABCA1 (ATP-binding cassette subfamily A member 1).

Conclusions: These findings demonstrate that the deletion of the 2 isoforms is required to fully eliminate the secretion of chylomicron in vitro. They also underscore the limited high-density lipoprotein production by the intestinal cells in response to knockout.

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.117.310121DOI Listing

Publication Analysis

Top Keywords

high-density lipoprotein
16
chylomicron retention
8
retention disease
8
sar1b gtpase
8
chylomicron output
8
caco-2/15 cells
8
apolipoprotein b-48
8
double knockout
8
labeled cholesterol
8
chylomicron
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!