Introduction: Loading stress due to individual variations in femoral morphology is thought to be strongly associated with the pathogenesis of atypical femoral fracture (AFF). In Japan, studies on AFF regarding pathogenesis in the mid-shaft are well-documented and a key factor in the injury is thought to be femoral shaft bowing deformity. Thus, we developed a CT-based finite element analysis (CT/FEA) model to assess distribution of loading stress in the femoral shaft.

Patients And Methods: A multicenter prospective study was performed at 12 hospitals in Japan from August 2015 to February 2017. We assembled three study groups-the mid-shaft AFF group (n=12), the subtrochanteric AFF group (n=10), and the control group (n=11)-and analyzed femoral morphology and loading stress in the femoral shaft by nonlinear CT/FEA.

Results: Femoral bowing in the mid-shaft AFF group was significantly greater (lateral bowing, p<0.0001; anterior bowing, p<0.01). Femoral neck-shaft angle in the subtrochanteric AFF group was significantly smaller (p<0.001). On CT/FEA, both the mid-shaft and subtrochanteric AFF group showed maximum tensile stress located adjacent to the fracture site. Quantitatively, there was a correlation between femoral bowing and the ratio of tensile stress, which was calculated between the mid-shaft and subtrochanteric region (lateral bowing, r=0.6373, p<0.0001; anterior bowing, r=-0.5825, p<0.001).

Conclusions: CT/FEA demonstrated that tensile stress by loading stress can cause AFF. The location of AFF injury could be determined by individual stress distribution influenced by femoral bowing and neck-shaft angle.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.injury.2017.09.023DOI Listing

Publication Analysis

Top Keywords

loading stress
16
femoral shaft
12
aff group
12
femoral
10
atypical femoral
8
femoral fracture
8
femoral bowing
8
finite element
8
element analysis
8
femoral morphology
8

Similar Publications

Comparative finite element analysis involves standardising aspects of models to test equivalent loading scenarios across species. However, regarding feeding biomechanics of the vertebrate skull, what is considered "equivalent" can depend on the hypothesis. Using 13 diversely-shaped skulls of marsupial bettongs and potoroos (Potoroidae), we demonstrate that scaling muscle forces to standardise specific aspects of biting mechanics can produce clearly opposing comparisons of stress or strain that are differentially suited to address specific kinds of hypotheses.

View Article and Find Full Text PDF

Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.

Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.

View Article and Find Full Text PDF

Inspection of wind turbine bolted connections using the ultrasonic phased array system.

Heliyon

July 2024

Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XQ, UK.

This study explores the inspection of bolted connections in wind turbines, specifically focusing on the application of Phased Array Ultrasonic Testing (PAUT). The research comprises four sections: Acoustoelastic Constant calibration, high tension investigation on bolts, blind tests on larger bolts, and Finite Element Analysis (FEA) verification. The methodology shows accurate results for stress while the bolt is under operative loads, and produces a clear indication of when it is above these loads and beginning to deform.

View Article and Find Full Text PDF

Newly identified c-di-GMP pathway putative EAL domain gene STM0343 regulates stress resistance and virulence in Salmonella enterica serovar Typhimurium.

Vet Res

January 2025

National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.

S. Typhimurium is a significant zoonotic pathogen, and its survival and transmission rely on stress resistance and virulence factors. Therefore, identifying key regulatory elements is crucial for preventing and controlling S.

View Article and Find Full Text PDF

Lower limb biomechanics of chronic ankle instability (CAI) individuals has been widely investigated, but few have evaluated the internal foot mechanics in CAI. This study evaluated bone and soft tissue stress in CAI contrasted with copers and non-injured participants during a cutting task. Integrating scanned 3D foot shapes and free-form deformation, sixty-six personalized finite element foot models were developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!