A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

River suspended sediment modelling using the CART model: A comparative study of machine learning techniques. | LitMetric

River suspended sediment modelling using the CART model: A comparative study of machine learning techniques.

Sci Total Environ

Water Resources and Environmental Engineering, University of Oulu, P.O. Box 4300, FIN-90014 Oulu, Finland.

Published: February 2018

Suspended sediment load (SSL) modelling is an important issue in integrated environmental and water resources management, as sediment affects water quality and aquatic habitats. Although classification and regression tree (CART) algorithms have been applied successfully to ecological and geomorphological modelling, their applicability to SSL estimation in rivers has not yet been investigated. In this study, we evaluated use of a CART model to estimate SSL based on hydro-meteorological data. We also compared the accuracy of the CART model with that of the four most commonly used models for time series modelling of SSL, i.e. adaptive neuro-fuzzy inference system (ANFIS), multi-layer perceptron (MLP) neural network and two kernels of support vector machines (RBF-SVM and P-SVM). The models were calibrated using river discharge, stage, rainfall and monthly SSL data for the Kareh-Sang River gauging station in the Haraz watershed in northern Iran, where sediment transport is a considerable issue. In addition, different combinations of input data with various time lags were explored to estimate SSL. The best input combination was identified through trial and error, percent bias (PBIAS), Taylor diagrams and violin plots for each model. For evaluating the capability of the models, different statistics such as Nash-Sutcliffe efficiency (NSE), Kling-Gupta efficiency (KGE) and percent bias (PBIAS) were used. The results showed that the CART model performed best in predicting SSL (NSE=0.77, KGE=0.8, PBIAS<±15), followed by RBF-SVM (NSE=0.68, KGE=0.72, PBIAS<±15). Thus the CART model can be a helpful tool in basins where hydro-meteorological data are readily available.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2017.09.293DOI Listing

Publication Analysis

Top Keywords

cart model
16
suspended sediment
8
estimate ssl
8
percent bias
8
bias pbias
8
ssl
7
cart
5
model
5
river suspended
4
sediment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!