Isoprene is synthesized through the 2-C-methylerythritol-5-phosphate (MEP) pathway that also produces abscisic acid (ABA). Increases in foliar free ABA concentration during drought induce stomatal closure and may also alter ethylene biosynthesis. We hypothesized a role of isoprene biosynthesis in protecting plants challenged by increasing water deficit, by influencing ABA production and ethylene evolution. We performed a split-root experiment on Populus nigra L. subjected to three water treatments: well-watered (WW) plants with both root sectors kept at pot capacity, plants with both root compartments allowed to dry for 5 days (DD) and plants with one-half of the roots irrigated to pot capacity, while the other half did not receive water (WD). WD and WW plants were similar in photosynthesis, water relations, foliar ABA concentration and isoprene emission, whereas these parameters were significantly affected in DD plants: leaf isoprene emission increased despite the fact that photosynthesis declined by 85% and the ABA-glucoside/free ABA ratio decreased significantly. Enhanced isoprene biosynthesis in water-stressed poplars may have contributed to sustaining leaf ABA biosynthesis by keeping the MEP pathway active. However, this enhancement in ABA was accompanied by no change in ethylene biosynthesis, likely confirming the antagonistic role between ABA and ethylene. These results may indicate a potential cross-talk among isoprene, ABA and ethylene under drought.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/tpx083 | DOI Listing |
Plant Physiol Biochem
December 2024
College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, 450046, China.
Paeonia suffruticosa is a plant of Paeonia in Paeoniaceae. It is an important woody ornamental flower in the world. High temperature in summer hinders the growth of tree peony and reduces its ornamental quality, which restricts the cultivation and application of tree peony in Jiangnan area of China.
View Article and Find Full Text PDFBMC Genomics
December 2024
Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil.
Background: Elucidating the intricacies of the sugarcane genome is essential for breeding superior cultivars. This economically important crop originates from hybridizations of highly polyploid Saccharum species. However, the large size (10 Gb), high degree of polyploidy, and aneuploidy of the sugarcane genome pose significant challenges to complete genome sequencing, assembly, and annotation.
View Article and Find Full Text PDFPhysiol Plant
December 2024
State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
Abscisic acid (ABA) and ethylene are two essential hormones that play crucial roles throughout the entire plant life cycle and in their tolerance to abiotic or biotic stress. In recent decades, increasing research has revealed that, in addition to their individual roles, these two hormones are more likely to function through their interactions, forming a complex regulatory network. More importantly, their functions change and their interactions vary from synergistic to antagonistic depending on the specific plant organ and development stage, which is less focused, compared and systematically summarized.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
Rice ( L.) feeds half the world's population and serves as one of the most vital staple food crops globally. The brown planthopper (BPH, Stål), a major piercing-sucking herbivore specific to rice, accounts for large yield losses annually in rice-growing areas.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Key Laboratory of Eco-Environment in the Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China.
With the expansion of cities and the development of industries, heavy metal pollution has caused a serious negative impact on the growth and development of animals and plants, which has become a global economic and social problem. Cadmium (Cd) is one of the main heavy metals that threaten the growth and development of plants, and it can lead to the imminent extinction of plants in severe cases. The part of upper reaches of the Yangtze River in China from Yibin to the Three Gorges Reservoir has been contaminated with varying degrees of Cd, and a rare and endangered plant called also lives in this area.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!