While prior noninvasive (e.g., electroencephalographic) studies suggest that the human primary motor cortex (M1) is active during gait processes, the limitations of noninvasive recordings make it impossible to determine whether M1 is involved in high-level motor control (e.g., obstacle avoidance, walking speed), low-level motor control (e.g., coordinated muscle activation), or only nonmotor processes (e.g., integrating/relaying sensory information). This study represents the first invasive electroneurophysiological characterization of the human leg M1 during walking. Two subjects with an electrocorticographic grid over the interhemispheric M1 area were recruited. Both exhibited generalized γ-band (40-200 Hz) synchronization across M1 during treadmill walking, as well as periodic γ-band changes within each stride (across multiple walking speeds). Additionally, these changes appeared to be of motor, rather than sensory, origin. However, M1 activity during walking shared few features with M1 activity during individual leg muscle movements, and was not highly correlated with lower limb trajectories on a single channel basis. These findings suggest that M1 primarily encodes high-level gait motor control (i.e., walking duration and speed) instead of the low-level patterns of leg muscle activation or movement trajectories. Therefore, M1 likely interacts with subcortical/spinal networks, which are responsible for low-level motor control, to produce normal human walking.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6248549PMC
http://dx.doi.org/10.1093/cercor/bhx155DOI Listing

Publication Analysis

Top Keywords

motor control
16
primary motor
8
motor cortex
8
speed low-level
8
low-level motor
8
muscle activation
8
leg muscle
8
motor
7
walking
7
electrocorticographic encoding
4

Similar Publications

Background: Fluoxetine, a serotonin reuptake inhibitor antidepressant, raises extracellular serotonin levels and promotes angiogenesis and neurogenesis. Numerous animal models have shown its beneficial effects on recovery from peripheral nerve injury.

Purpose: The primary objective of this study was to analyze the influence of fluoxetine on the sensory-motor function recovery of the sciatic nerve in Wistar rats after axonotmesis.

View Article and Find Full Text PDF

Computer model for gait assessments in Parkinson's patients using a fuzzy inference model and inertial sensors.

Artif Intell Med

December 2024

Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Guillermo Massieu 239, 07320 Mexico City, Mexico.

Patients with Parkinson's disease (PD) in the moderate and severe stages can present several walk alterations. They can show slow movements and difficulty initiating, varying, or interrupting their gait; freezing; short steps; speed changes; shuffling; little arm swing; and festinating gait. The Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) has a good reputation for uniformly evaluating motor and non-motor aspects of PD.

View Article and Find Full Text PDF

Background: This study aims to investigate the effect of a newly developed virtual reality task-oriented training (VR-TOT) video game on upper extremity fine motor function compared with conventional occupational therapy through leap motion in children with spastic hemiplegic cerebral palsy (CP).

Methods: In this double-blind randomized clinical trial, 30 children with spastic hemiplegic CP aged six to 10 years were included and randomly allocated into two groups. During six weeks, 15 patients in the intervention group received VR_TOT-based video game in addition to conventional occupational therapy, whereas 15 patients in the control group received only conventional occupational therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!