Epigenetic mechanisms play an important role in the regulation of the Growth Hormone- Insulin-like Growth Factor 1 (GH-IGF1) axis and in processes for controlling long bone growth, and carbohydrate and lipid metabolism. Improvement of methodologies that allow for the assessment of epigenetic regulation have contributed enormously to the understanding of GH action, but many questions still remain to be clarified. The reversible nature of epigenetic factors and, particularly, their role as mediators between the genome and the environment, make them viable therapeutic target candidates. Rather than reviewing the molecular and epigenetic pathways regulated by GH action, in this review we have focused on the use of epigenetic modulators as potential drugs to improve the GH response. We first discuss recent progress in the understanding of intracellular molecular mechanisms controlling GH and IGF-I action. We then emphasize current advances in genetic and epigenetic mechanisms that control gene expression, and which support a key role for epigenetic regulation in the cascade of intracellular events that trigger GH action when coupled to its receptor. Thirdly, we focus on fetal programming and epigenetic regulation at the locus. We then discuss epigenetic alterations in intrauterine growth retardation, and the possibility for a potential epigenetic pharmaceutical approach in short stature associated with this fetal condition. Lastly, we review an example of epigenetic therapeutics in the context of growth-related epigenetic deregulation disorders. The advance of our understanding of epigenetic changes and the impact they are having on new forms of therapy creates exciting prospects for the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666699PMC
http://dx.doi.org/10.3390/ijms18101624DOI Listing

Publication Analysis

Top Keywords

epigenetic
13
epigenetic regulation
12
epigenetic mechanisms
8
gh/igf-1 signaling
4
signaling current
4
current knowledge
4
knowledge epigenetics
4
epigenetics review
4
review considerations
4
considerations therapeutic
4

Similar Publications

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options and a poor prognosis. The critical role of epigenetic alterations such as changes in DNA methylation, histones modifications, and chromatin remodeling, in pancreatic tumors progression is becoming increasingly recognized. Moreover, in PDAC these aberrant epigenetic mechanisms can also limit therapy efficacy.

View Article and Find Full Text PDF

Crosstalk between non-coding RNAs and programmed cell death in colorectal cancer: implications for targeted therapy.

Epigenetics Chromatin

January 2025

Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.

Background: Colorectal cancer (CRC) remains one of the most common causes of cancer-related mortality worldwide. Its progression is influenced by complex interactions involving genetic, epigenetic, and environmental factors. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been identified as key regulators of gene expression, affecting diverse biological processes, notably programmed cell death (PCD).

View Article and Find Full Text PDF

Catalytic-independent functions of the Integrator-PP2A complex (INTAC) confer sensitivity to BET inhibition.

Nat Chem Biol

January 2025

Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.

Chromatin and transcription regulators are critical to defining cell identity through shaping epigenetic and transcriptional landscapes, with their misregulation being closely linked to oncogenesis. Pharmacologically targeting these regulators, particularly the transcription-activating BET proteins, has emerged as a promising approach in cancer therapy, yet intrinsic or acquired resistance frequently occurs, with poorly understood mechanisms. Here, using genome-wide CRISPR screens, we find that BET inhibitor efficacy in mediating transcriptional silencing and growth inhibition depends on the auxiliary/arm/tail module of the Integrator-PP2A complex (INTAC), a global regulator of RNA polymerase II pause-release dynamics.

View Article and Find Full Text PDF

Unravelling malaria latency: parasite intrinsic and environmental factors influencing dormant liver stages.

Trends Parasitol

January 2025

Department of Molecular Biology, Radboud University, 6525GA, Nijmegen, The Netherlands. Electronic address:

Hypnozoites - dormant Plasmodium parasites in the liver - can cause relapse infections and form a major obstacle to malaria eradication. The mechanisms controlling dormancy remain poorly understood, but hypnozoite formation and reactivation is likely regulated by a combination of parasite intrinsic factors and external stimuli. We reviewed current knowledge of Plasmodium dormancy and drew parallels with dormancy in other parasites and life-cycle stages.

View Article and Find Full Text PDF

Liver regeneration is intricate, involves many cells, and necessitates extended research. This study aimed to investigate the response of liver oval cells (bipotent liver progenitors) to the epigenetic modifier trichostatin A (TSA), an HDAC1 inhibitor, and to develop a scoring system for assessing the response of these cells. Three groups of equally divided rats (n=24) were selected: control (A, dimethyl sulfoxide treated); oval cell induction (B, acetylaminofluorene [2-AAF] to block hepatocyes/carbon tetrachloride [CCL4] to induce oval cell response); and epigenetic modulation (C, TSA post 2-AAF/CCL4 injury).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!