Micrometer-sized polymer-grafted gold-silica (Au-SiO) Janus particles were fabricated by vacuum evaporation followed by polymer grafting. The Janus particle diameter, diameter distribution, morphology, surface chemistry, and water wettability were characterized by optical microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and contact angle measurements. The optical microscopy results showed that the polystyrene (PS)-grafted Au-SiO Janus particles exhibited monolayer adsorption at the air-water interface and could stabilize bubbles, preventing their coalescence for more than 1 month. The hydrophobic PS-grafted Au and hydrophilic SiO surfaces were exposed to the air and water phases, respectively. Bare Au-SiO and poly(2-(perfluorobutyl)ethyl methacrylate) (PPFBEM)-grafted Au-SiO Janus particles could also stabilize bubbles for up to 2 weeks. By contrast, bare silica particles did not stabilize bubbles and were dispersed in water. The bubbles that formed in the PS-grafted Janus particle system were more stable than those formed in the bare Au-SiO Janus particles, PPFBEM-grafted Au-SiO Janus particles, and SiO particle systems because of the high adsorption energy of the PS-grafted particles at the air-water interface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.7b02670DOI Listing

Publication Analysis

Top Keywords

janus particles
24
au-sio janus
20
stabilize bubbles
12
janus
8
particles
8
janus particle
8
optical microscopy
8
air-water interface
8
bare au-sio
8
ppfbem-grafted au-sio
8

Similar Publications

In this study, we developed a novel composite catalytic hydrogel, which integrates excellent mechanical properties, catalytic activity, and sensing performance. Discarded hydrogel sensors are reused as templates for in-situ generation of metal nanoparticles, and multifunctional hydrogels combining sensing and catalysis are realized. Polyacrylamide (PAM) provides a three-dimensional network structure, while octadecyl methacrylate (SMA) acts as a hydrophobic association center, enhancing the structural stability of the hydrogel.

View Article and Find Full Text PDF

Despite the advances in the development of therapeutic wearable wound-healing patches, lack self-healing properties and strong adhesion to diabetic skin, hindering their effectiveness. We propose a unique, wearable patch made from a 3D organo-hydrogel nanocomposite containing polydopamine, titanium dioxide nanoparticles, and silver quantum dots (PDA-TiO@Ag). The designed patch exhibits ultra-stretchable, exceptional-self-healing, self-adhesive, ensuring conformal contact with the skin even during movement.

View Article and Find Full Text PDF

Nanoparticles (NPs) have emerged as a potent choice for various applications, from drug delivery to agricultural studies, serving as an alternative and promising methodology for future advancements. They have been widely explored in delivery systems, demonstrating immense promise and high efficiency for the delivery of numerous biomolecules such as proteins and anticancer agents, either solely or modified with other compounds to enhance their capabilities. In addition, the utilization of NPs extends to antimicrobial studies, where they are used to develop novel antibacterial, antifungal, and antiviral formulations with advanced characteristics.

View Article and Find Full Text PDF

Photocatalysis offers a powerful approach for water purification from toxic organics, hydrogen production, biosolids processing, and the conversion of CO into useful products. Further advancements in photocatalytic technologies depend on the development of novel, highly efficient catalysts and optimized synthesis methods. This study aimed to develop a laser synthesis technique for bismuth oxyhalide nanoparticles (NPs) as efficient and multifunctional photocatalysts.

View Article and Find Full Text PDF

The rapid progress in nanotechnology has introduced multifunctional iron oxide nanoparticles as promising agents in cancer treatment. This research focused on the synthesis and assessment of citric-acid-coated, folic-acid-conjugated nanoparticles loaded with doxorubicin, evaluating their therapeutic potential in tumor models. An advanced automated continuous technology line (CTL) utilizing a controlled co-precipitation method was employed to produce highly dispersive, multifunctional nanofluids with a narrow size distribution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!