Two different two-dimensional thiostannates (SnS) were synthesized using tris(2-aminoethyl)amine (tren) or 1-(2-aminoethyl)piperidine (1AEP) as structure-directing agents. Both structures consist of negatively charged thiostannate layers with charge stabilizing cations sandwiched in-between. The fundamental building units are SnS broken-cube clusters connected by double sulfur bridges to form polymeric (SnS) honeycomb hexagonal layers. The compounds are members of the R-SnS-1 family of structures, where R indicates the type of cation. Despite consisting of identical structural units, the band gaps of the two semiconducting compounds were found to differ substantially at 2.96 eV (violet-blue light) and 3.21 eV (UV light) for tren-SnS-1 and 1AEP-SnS-1, respectively. Aiming to explain the observed differences in optical properties, the structures of the two thiostannates were investigated in detail based on combined X-ray diffraction, solid-state C and Sn MAS NMR spectroscopy and scanning electron microscopy studies. The compound tren-SnS-1 has a hexagonal structure consisting of planar SnS layers with regular hexagonal pores and disordered cations, whereas 1AEP-SnS-1 has an orthorhombic unit cell with ordered cations, distorted hexagonal pores and non-planar SnS layers. In the formation of 1AEP-SnS-1, an intramolecular reaction of the structure-directing piperidine takes place to form an N-heterobicyclic cation through in situ C-H activation. Hirshfeld surface analysis was used to investigate the interaction between the SnS layers and cations in 1AEP-SnS-1 and revealed that the most nucleophilic part of the SnS sheets is one of the two crystallographically distinct double sulfur bridges.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S2052520617010630 | DOI Listing |
Phys Chem Chem Phys
January 2025
School of Electromechanical and Information Engineering, PuTian University, Putian Fujian 351100, China.
As the anode material of LIBs, the SnS electrode boasts a reversible specific capacity as high as 1231 mA h g. Additionally, SnS possesses a CdI2-type layered structure with a layer spacing of 0.59 nm, which allows it to accommodate numerous lithium ions and facilitate rapid charge transfer.
View Article and Find Full Text PDFChem Asian J
January 2025
Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China.
Li-ion capacitors (LICs) integrate the desirable features of lithium-ion batteries (LIBs) and supercapacitors (SCs), but the kinetic imbalance between the both electrodes leads to inferior electrochemical performance. Thus, constructing an advanced anode with outstanding rate capability and terrific redox kinetics is crucial to LICs. Herein, heterostructured ZnS/SnS nanosheets encapsulated into N-doped carbon microcubes (ZnS/SnS@NC) are successfully fabricated.
View Article and Find Full Text PDFLangmuir
January 2025
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, P. R. China.
Tin-based sulfides, possessing a unique layered structure and a high theoretical capacity, stand as highly prospective contenders for anode materials in lithium-ion batteries (LIBs). Nevertheless, the pronounced volume expansion that occurs during lithium storage and poor capacity retention have limited its progress toward commercialization. Herein, we designed and prepared a SnS/RGO composite with a three-dimensional porous structure by sulfurizing the SnO(OH)/GO precursor.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
Optoelectronic devices require stable operation to detect repetitive visual information. In this study, endurable arrays based on heterojunction phototransistors composed of indium-gallium-zinc oxide (IGZO) with a low dark current and tin sulfide (SnS) capable of absorbing visible light are developed for image sensors. The tandem structure of IGZO/SnS/IGZO (ISI) enables stable operation under repetitive exposure to visible light by improving the transport ability of the photoexcited carriers through mitigated trap sites and their separation into each IGZO layer.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry, College of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!