Background: Enhanced IAPP production may contribute to islet amyloid formation in type 2 diabetes. The objective of this study was to determine the effects of the saturated fatty acid palmitate on IAPP levels in human β-cells.

Methods: EndoC-βH1 cells and human islets were cultured in the presence of sodium palmitate. Effects on IAPP/insulin mRNA expression and secretion were determined using real-time qPCR/ELISA. Pharmacological activators and/or inhibitors and RNAi were used to determine the underlying mechanisms.

Results: We observed that EndoC-βH1 cells exposed to palmitate for 72 h displayed decreased expression of Pdx-1 and MafA and increased expression of thioredoxin-interacting protein (TXNIP), reduced insulin mRNA expression and glucose-induced insulin secretion, as well as increased IAPP mRNA expression and secretion. Further, these effects were independent of fatty acid oxidation, but abolished in response to GPR40 inhibition/downregulation. In human islets both a high glucose concentration and palmitate promoted increased IAPP mRNA levels, resulting in an augmented IAPP/insulin mRNA ratio. This was paralleled by elevated IAPP/insulin protein secretion and content ratios.

Conclusions: Addition of exogenous palmitate to human β-cells increased the IAPP/insulin expression ratio, an effect contributed to by activation of GPR40. These findings may be pertinent to our understanding of the islet amyloid formation process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5649320PMC
http://dx.doi.org/10.1080/03009734.2017.1368745DOI Listing

Publication Analysis

Top Keywords

iapp/insulin mrna
12
endoc-βh1 cells
12
mrna expression
12
addition exogenous
8
sodium palmitate
8
mrna ratio
8
islet amyloid
8
amyloid formation
8
fatty acid
8
human islets
8

Similar Publications

Type 2 diabetes mellitus (T2DM) is characterized by the dysfunction and loss of pancreatic islet β‑cells, in part due to islet amyloid deposits derived from islet amyloid polypeptide (IAPP). The glucagon‑like peptide‑1 (GLP‑1) receptor agonist exendin‑4 enhances the insulin secretory response by increasing β‑cell mass in T2DM. However, it is unknown whether exendin‑4 protects β‑cells from IAPP‑mediated autophagy and apoptosis.

View Article and Find Full Text PDF

Background: Enhanced IAPP production may contribute to islet amyloid formation in type 2 diabetes. The objective of this study was to determine the effects of the saturated fatty acid palmitate on IAPP levels in human β-cells.

Methods: EndoC-βH1 cells and human islets were cultured in the presence of sodium palmitate.

View Article and Find Full Text PDF

We studied the contribution of the constitutive and the regulated pathways to the total secretion of islet amyloid polypeptide (IAPP) in human pancreatic islets after prolonged culture at either 5.5 or 24.4 mM glucose.

View Article and Find Full Text PDF

Non-insulin-dependent diabetes mellitus (NIDDM) is associated histopathologically with islet amyloid deposits of which a major component is islet amyloid polypeptide (IAPP)/amylin. We examined whether endogenous IAPP controls insulin secretion via a local effect within pancreatic islets and whether overexpression of this peptide contributes to pancreatic beta-cell dysfunction in this disease. Transgenic mice expressing human IAPP in pancreatic beta cell were used in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!