Previous study showed that miRNA aberrant expression is involved in chondrogenic differentiation. In this study, we aimed to investigate the effects of miR-132-3p on chondrogenic differentiation and the underlying mechanisms. First, quantitative PCR were performed to determine the level of MiR-132-3p. Then, we used luciferase assay to examine the target of miR-132-3p. Proteoglycan was tested by Alcian blue staining assay. Moreover, the sex determining region Y-box 9 (SOX9), Collagen type II alpha 1 chain (COL2A1) and Aggrecan (ACAN) levels were analyzed by quantitative PCR, immunofluorescence and Western blotting. Our results showed that MiR-132-3p level was reduced in rat MSCs (rMSCs) during chondrogenic differentiation. Ectopic expression of miR-132-3p induced proteoglycan accumulation and the increase of ACAN, SOX9 and COL2A1 expression, which were involved in inducing chondrogenic differentiation of rMSCs. More importantly, ADAMTS-5 was identified as the target of MiR-132-3p. Knockdown of ADAMTS-5 increased proteoglycan level, but reduced the SOX9, ACAN, and COL2A1 levels during chondrogenic differentiation of rMSCs. Taken together, our results revels that MiR-132-3p promotes rMSCs chondrogenic differentiation, possibly mediated by targeting ADAMTS-5, which provided new perspective on the chondrogenic differentiation and pathology of osteoarthritis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.26421DOI Listing

Publication Analysis

Top Keywords

chondrogenic differentiation
32
mir-132-3p
8
chondrogenic
8
differentiation
8
expression involved
8
quantitative pcr
8
target mir-132-3p
8
level reduced
8
rmscs chondrogenic
8
differentiation rmscs
8

Similar Publications

Growth Factor Stimulation Regimes to Support the Development and Fusion of Cartilage Microtissues.

Tissue Eng Part C Methods

January 2025

Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.

Scaffold-free tissue engineering strategies using cellular aggregates, microtissues, or organoids as "biological building blocks" could potentially be used for the engineering of scaled-up articular cartilage or endochondral bone-forming grafts. Such approaches require large numbers of cells; however, little is known about how different chondrogenic growth factor stimulation regimes during cellular expansion and differentiation influence the capacity of cellular aggregates or microtissues to fuse and generate hyaline cartilage. In this study, human bone marrow mesenchymal stem/stromal cells (MSCs) were additionally stimulated with bone morphogenetic protein 2 (BMP-2) and/or transforming growth factor (TGF)-β1 during both monolayer expansion and subsequent chondrogenic differentiation in a microtissue format.

View Article and Find Full Text PDF

Introduction: FTY720 bioactive lipid has proliferative, osteoinductive, chemo attractive, and angiogenic properties, being thus a potential exogenous administered agent for promotion of bone regeneration. Herein we developed FTY720-loaded liposomes as a potential delivery system that could retain and prolong the bioactivity of the bioactive lipid and at the same time reduce its cytotoxicity (at high doses).

Methods: FTY720 liposomes were prepared by thin-lipid hydration and microfluidic flow focusing, and evaluated for their ability to induce proliferation, osteoinduction, and chemoattraction in three cell types: MC3T3-E1 pre-osteoblast cells, L929 fibroblast cells, and ATDC5 chondrogenic cells.

View Article and Find Full Text PDF

Osteochondral defects (OCD) pose a significant clinical challenge due to the limited self-repair capacity of cartilage, leading to pain, joint dysfunction, and progression to osteoarthritis. Cellular implantations of adult mesenchymal stem cells (MSCs) enhanced with treatment of factors, such as small molecule Kartogenin (KGN) to promote chondrogenic differentiation, are promising but these cells often encounter hypertrophy during differentiation, compromising long-term stability. Induced pluripotent stem cell-derived MSCs (iMSCs) offer greater proliferative and differentiation capacity than MSCs and may provide a superior source of cells for cartilage repair.

View Article and Find Full Text PDF

Introduction: Mesenchymal stem cell (MSC)-based therapies have emerged as a promising approach for treating articular cartilage injuries. However, enhancing the chondrogenic differentiation potential of MSCs remains a significant challenge. KDM6B, a histone demethylase that specifically removes H3K27me3 marks, is essential in controlling the maturation of chondrocytes.

View Article and Find Full Text PDF

Cartilage repair remains a formidable challenge because of its limited regenerative capacity. Construction of a biomimetic hydrogel matrix that can induce cell aggregation is a promising therapeutic option. Cell aggregates are more beneficial than dissociated cells for improving survival and chondrogenic differentiation, thereby facilitating cartilage repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!