Engineering the electronic properties of transition metal phosphides has shown great effectiveness in improving their intrinsic catalytic activity for the hydrogen evolution reaction (HER) in water splitting applications. Herein, we report for the first time, the creation of Fe vacancies as an approach to modulate the electronic structure of iron phosphide (FeP). The Fe vacancies were produced by chemical leaching of Mg that was introduced into FeP as "sacrificial dopant". The obtained Fevacancy-rich FeP nanoparticulate films, which were deposited on Ti foil, show excellent HER activity compared to pristine FeP and Mg-doped FeP, achieving a current density of 10 mA cm at overpotentials of 108 mV in 1 m KOH and 65 mV in 0.5 m H SO , with a near-100 % Faradaic efficiency. Our theoretical and experimental analyses reveal that the improved HER activity originates from the presence of Fe vacancies, which lead to a synergistic modulation of the structural and electronic properties that result in a near-optimal hydrogen adsorption free energy and enhanced proton trapping. The success in catalytic improvement through the introduction of cationic vacancy defects has not only demonstrated the potential of Fe-vacancy-rich FeP as highly efficient, earth abundant HER catalyst, but also opens up an exciting pathway for activating other promising catalysts for electrochemical water splitting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5725677PMC
http://dx.doi.org/10.1002/cssc.201701565DOI Listing

Publication Analysis

Top Keywords

water splitting
12
cationic vacancy
8
vacancy defects
8
iron phosphide
8
hydrogen evolution
8
electrochemical water
8
electronic properties
8
fep
6
defects iron
4
phosphide promising
4

Similar Publications

Water-Mediated Proton Hopping Mechanisms at the SnO(110)/HO Interface from Ab Initio Deep Potential Molecular Dynamics.

Precis Chem

December 2024

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

The interfacial proton transfer (PT) reaction on the metal oxide surface is an important step in many chemical processes including photoelectrocatalytic water splitting, dehydrogenation, and hydrogen storage. The investigation of the PT process, in terms of thermodynamics and kinetics, has received considerable attention, but the individual free energy barriers and solvent effects for different PT pathways on rutile oxide are still lacking. Here, by applying a combination of ab initio and deep potential molecular dynamics methods, we have studied interfacial PT mechanisms by selecting the rutile SnO(110)/HO interface as an example of an oxide with the characteristic of frequently interfacial PT processes.

View Article and Find Full Text PDF

Deciphering the surface electrochemical reconstruction of ruthenium-cobalt-nickel phosphide for efficient high-current hydrogen evolution and overall water splitting.

J Colloid Interface Sci

December 2024

Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan University of Technology, Wuhan, Hubei 430073, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430073, China. Electronic address:

Development of efficient and stable bifunctional transition metal phosphide catalysts is critical for advancing hydrogen production technologies. Herein, RuCo co-doped NiP (RuCoNiP) was designed and synthesized by one-step electrodeposition for Ni electronic structure modulation, and evolved to RuCoNiP@α-Ni(OH) and RuCoNiP@Co/Ni(OH) heterointerfaces by self-assembled reconstruction during HER and OER processes, respectively. RuCoNiP@α-Ni(OH) enhances HER activity (305.

View Article and Find Full Text PDF

This study aimed to evaluate the histological success of pulpotomy in primary molars using white mineral trioxide aggregate (WMTA) mixed with 2.25% sodium hypochlorite (NaOCl) gel and to evaluate in vitro its physical and chemical properties. The study had a clinical stage and an in-vitro stage.

View Article and Find Full Text PDF

This paper presents a slot antenna integrated with a split ring resonator (SRR) and feed line, designed to achieve a high Q-factor while maximizing channel capacity utilization. By incorporating a lens into the dielectric resonator antenna (DRA), we enhance both bandwidth and directivity, with the dielectric material's permittivity serving as a key control parameter for radiation characteristics. We explore water and ethanol as controllable dielectrics within the terahertz (THz) frequency range (0.

View Article and Find Full Text PDF

The exploration and rational design of high-performance, durable, and non-precious-metal bifunctional oxygen electrocatalysts are highly desired for the large-scale application of overall water splitting. Herein, an effective and straightforward coupling approach was developed to fabricate high-performance bifunctional OER/HER electrocatalysts based on core-shell nanostructure comprising a Ni/NiN core and a NiFe(OH) shell. The as-prepared Ni/NiN@NiFe(OH)-4 catalyst exhibited low overpotentials of 57 and 243 mV at 10 mA cm for the HER and OER in 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!