Increased methylation levels at cytosines proximal to guanines (CpG) in the promoter regions of tumor suppressor genes have been reported to play an important role in the development and progression of bladder cancer. In this study, we conducted a genome-wide analysis using data from The Cancer Genome Atlas to better characterize CpG methylation and mRNA expression patterns in urothelial carcinomas and to identify new epigenetic biomarkers of survival. Across 408 tumors, we identified 223 genes that displayed significant relationships between CpG methylation and mRNA expression levels. Hypermethylation within 200 base pairs upstream of the transcription start site and hypomethylation within the 3' untranslated region and body region were associated with gene silencing. These 223 genes were functionally enriched for their role in glutamate receptor signaling and among them was a novel, tumor-stage-independent epigenetic biomarker of overall mortality, hypermethylation and elevated mRNA expression levels were associated with significantly worse survival outcomes in patients with basal-like urothelial carcinomas. Furthermore, 70 genes associated with glutamate receptor signaling were differentially expressed between basal (n = 203 tumors) and luminal (n = 205 tumors) subtypes of bladder cancer, including genes involved in glutamate receptor-mediated activation of the calmodulin, PI3K/Akt, and EGFR signaling pathways. The majority of genes displayed increased expression levels in basal-like subtypes. This research highlights glutamate receptors as targets for investigation in the development and pharmacological treatment of urothelial cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5622220PMC

Publication Analysis

Top Keywords

bladder cancer
16
cpg methylation
12
mrna expression
12
expression levels
12
cancer genome
8
genome atlas
8
methylation mrna
8
urothelial carcinomas
8
223 genes
8
genes displayed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!