Protein specific aptamers are highly applicable affinity ligands in different fields of research and clinical applications. They have been developed against various targets, in particular, bio-macromolecules such as proteins. Among human proteins, the coagulation factors are the most attractive targets for aptamer selection and their specific aptamers have valuable characteristics in therapeutic and analytical applications. In this study, a plasma derived coagulation factor VIII was considered as the protein target for DNA aptamer selection using size exclusion chromatography-SELEX. Potential aptameric oligonucleotides with high affinity and specificity were achieved during eight rounds of selection. Binding affinity constant of selected aptamer and aptameric enriched pool were in nanomolar range that was comparable to monoclonal antibodies. Further improvement studies can result in aptamers that are more promising as an industrial affinity ligand for the purification of anti-hemophilia factor from plasma source.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5603883PMC

Publication Analysis

Top Keywords

affinity ligands
8
coagulation factor
8
factor viii
8
specific aptamers
8
aptamer selection
8
affinity
5
challenges design
4
design develop
4
develop dna
4
aptamers
4

Similar Publications

Background: Liver fibrosis is a serious global health issue, but current treatment options are limited due to a lack of approved therapies capable of preventing or reversing established fibrosis.

Aim: This study investigated the antifibrotic effects of a synthetic peptide derived from α-lactalbumin in a mouse model of thioacetamide (TAA)-induced liver fibrosis.

Methods: analyses were conducted to assess the physicochemical properties, pharmacophore features, and docking interactions of the peptide.

View Article and Find Full Text PDF

Computational identification of novel natural inhibitors against triple mutant DNA gyrase A in fluoroquinolone-resistant Typhimurium.

Biochem Biophys Rep

March 2025

Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.

The rising resistance to fluoroquinolones in Typhimurium poses a significant global health challenge. This computational research addresses the pressing need for new therapeutic drugs by utilizing various computational tools to identify potential natural compounds that can inhibit the triple mutant DNA gyrase subunit A enzyme, which is crucial in fluoroquinolone resistance. Initially, the three-dimensional structure of the wild-type DNA gyrase A protein was modeled using homology modeling, and followed by mutagenesis to create the clinically relevant triple mutant (SER83PHE, ASP87GLY, ALA119SER) DNA gyrase A protein structure.

View Article and Find Full Text PDF

Ras gene is frequently mutated in cancer. Among different subtypes of Ras gene, K-Ras mutation occurs in nearly 30 % of human cancers. K-Ras mutation, specifically K-Ras (G12D) mutation is prevalent in cancers like lung, colon and pancreatic cancer.

View Article and Find Full Text PDF

Advancements in drug discovery: integrating CADD tools and drug repurposing for PD-1/PD-L1 axis inhibition.

RSC Adv

January 2025

LAQV and REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Caparica Portugal

Despite significant strides in improving cancer survival rates, the global cancer burden remains substantial, with an anticipated rise in new cases. Immune checkpoints, key regulators of immune responses, play a crucial role in cancer evasion mechanisms. The discovery of immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 has revolutionized cancer treatment, with monoclonal antibodies (mAbs) becoming widely prescribed.

View Article and Find Full Text PDF

In silico approaches for developing sesquiterpene derivatives as antagonists of human nicotinic acetylcholine receptors (nAChRs) for nicotine addiction treatment.

Curr Res Struct Biol

June 2025

Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang KM 21, Sumedang, 45363, Indonesia.

Cinnamomum, a genus within the Lauraceae family, has gained global recognition due to its wide-ranging utility. Extensive research has been dedicated to exploring its phytochemical composition and pharmacological effects. Notably, the uniqueness of Cinnamomum lies in its terpenoid content, characterized by distinctive structures and significant biological implications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!