Anthrax: Where Margins are Merging between Emerging Threats and Bioterrorism.

Indian J Dermatol

Department of Microbiology, School of Tropical Medicine, Kolkata, West Bengal, India.

Published: January 2017

National Institute of Allergy and Infectious Diseases has classified all the emerging infectious diseases agents under three categories. Among Category A priority pathogens comes -the causative agent of Anthrax. It is a gram positive spore bearing bacteria, and the disease is typically associated with grazing animals, and affects the people as a zoonosis. The disease can be classically transmitted by three routes namely: cutaneous, gastrointestinal and pulmonary, with a fourth route recently identified as "injection anthrax", seen in intravenous drug abusers. Cutaneous anthrax is the commonest form in humans, accounting for 95% of all the cases. There are two main virulence factors of this bacteria, a capsule and an exotoxin, each carried by a separate toxin. Two models have been used for explaining the pathogenesis of this infection. The earlier one or "Trojan horse" model is now replaced with "jail-break" model. Centers for disease control (CDC) has issued updated guidelines for diagnosis, post-exposure prophylaxis and treatment. For immunization, anthrax vaccine absorbed is available.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5618831PMC
http://dx.doi.org/10.4103/ijd.IJD_378_17DOI Listing

Publication Analysis

Top Keywords

infectious diseases
8
anthrax
4
anthrax margins
4
margins merging
4
merging emerging
4
emerging threats
4
threats bioterrorism
4
bioterrorism national
4
national institute
4
institute allergy
4

Similar Publications

Background: In this phase 3 trial of an investigational maternal respiratory syncytial virus prefusion F protein-based vaccine (RSVPreF3-Mat), a higher rate of preterm birth was observed in the vaccine (6.8%) versus the placebo group (4.9%).

View Article and Find Full Text PDF

Oral Regimens for Rifampin-Resistant, Fluoroquinolone-Susceptible Tuberculosis.

N Engl J Med

January 2025

From Médecins Sans Frontières (L.G., F.V.), Sorbonne Université, INSERM Unité 1135, Centre d'Immunologie et des Maladies Infectieuses (L.G.), Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Universitaire Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (L.G.), and Epicentre (M.G., E. Baudin), Paris, and Translational Research on HIV and Endemic and Emerging Infectious Diseases, Montpellier Université de Montpellier, Montpellier, Institut de Recherche pour le Développement, Montpellier, INSERM, Montpellier (M.B.) - all in France; Interactive Development and Research, Singapore (U.K.); McGill University, Epidemiology, Biostatistics, and Occupational Health, Montreal (U.K.); UCSF Center for Tuberculosis (G.E.V., P.N., P.P.J.P.) and the Division of HIV, Infectious Diseases, and Global Medicine (G.E.V.), University of California at San Francisco, San Francisco; the National Scientific Center of Phthisiopulmonology (A.A., E. Berikova) and the Center of Phthisiopulmonology of Almaty Health Department (A.K.), Almaty, and the City Center of Phthisiopulmonology, Astana (Z.D.) - all in Kazakhstan; Médecins Sans Frontières (C.B., I.M.), the Medical Research Council Clinical Trials Unit at University College London (I.M.), and St. George's University of London Institute for Infection and Immunity (S.W.) - all in London; MedStar Health Research Institute, Washington, DC (M.C.); Médecins Sans Frontières, Mumbai (V. Chavan), the Indian Council of Medical Research Headquarters-New Delhi, New Delhi (S. Panda), and the Indian Council of Medical Research-National AIDS Research Institute, Pune (S. Patil) - all in India; the Centre for Infectious Disease Epidemiology and Research (V. Cox) and the Department of Medicine (H. McIlleron), University of Cape Town, and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (S.W.) - both in Cape Town, South Africa; the Institute of Tropical Medicine, Antwerp, Belgium (B. C. J.); Médecins Sans Frontières, Geneva (G.F., N.L.); Médecins Sans Frontières, Yerevan, Armenia (O.K.); the National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia (N.K.); Partners In Health (M.K.) and Jhpiego Lesotho (L.O.) - both in Maseru; Socios En Salud Sucursal Peru (L.L., S.M.-T., J.R., E.S.-G., D.E.V.-V.), Hospital Nacional Sergio E. Bernales, Centro de Investigacion en Enfermedades Neumologicas (E.S.-G.), Hospital Nacional Dos de Mayo (E.T.), Universidad Nacional Mayor de San Marcos (E.T.), and Hospital Nacional Hipólito Unanue (D.E.V.-V.) - all in Lima; Global Health and Social Medicine, Harvard Medical School (L.L., K.J.S., M.L.R., C.D.M.), Partners In Health (L.L., K.J.S., M.L.R., C.D.M.), the Division of Global Health Equity, Brigham and Women's Hospital (K.J.S., M.L.R., C.D.M.), the Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, (L.T.), and Harvard T.H. Chan School of Public Health (L.T.) - all in Boston; and the Indus Hospital and Health Network, Karachi, Pakistan (H. Mushtaque, N.S.).

Background: For decades, poor treatment options and low-quality evidence plagued care for patients with rifampin-resistant tuberculosis. The advent of new drugs to treat tuberculosis and enhanced funding now permit randomized, controlled trials of shortened-duration, all-oral treatments for rifampin-resistant tuberculosis.

Methods: We conducted a phase 3, multinational, open-label, randomized, controlled noninferiority trial to compare standard therapy for treatment of fluoroquinolone-susceptible, rifampin-resistant tuberculosis with five 9-month oral regimens that included various combinations of bedaquiline (B), delamanid (D), linezolid (L), levofloxacin (Lfx) or moxifloxacin (M), clofazimine (C), and pyrazinamide (Z).

View Article and Find Full Text PDF

Acute encephalopathy without hyperammonemia has a different presentation than overt hepatic encephalopathy and displays similarly severe prognosis.

Hepatology

January 2025

AP-HP, Sorbonne Université, Liver Intensive Care Unit, Hepatogastroenterology Department, La Pitié-Salpêtrière Hospital, 47-83 Boulevard de l'Hôpital, Paris 75013, France.

Background And Aims: In cirrhosis, some patients display acute encephalopathy without hyperammonemia (NonHep E) which is not considered as overt hepatic encephalopathy (OHE). We aimed to assess the prevalence and characteristics of NonHep E and OHE in cirrhotic patients displaying acute encephalopathy, assess their respective prognosis and compare it to other causes of acute decompensation (AD) with/without hyperammonemia.

Approach And Results: We conducted a retrolective analysis from a prospective cohort of patients hospitalized for AD.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) presents a significant global health concern, affecting 3.3% of the world's population. The primary mode of HCV transmission is through blood and blood products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!