MicroRNA-134 regulates poliovirus replication by IRES targeting.

Sci Rep

College of Veterinary Medicine, Department of Infectious Diseases, University of Georgia, Athens, 30602, GA, USA.

Published: October 2017

Global poliovirus eradication efforts include high vaccination coverage with live oral polio vaccine (OPV), surveillance for acute flaccid paralysis, and OPV "mop-up" campaigns. An important objective involves host-directed strategies to reduce PV replication to diminish viral shedding in OPV recipients. In this study, we show that microRNA-134-5p (miR-134) can regulate Sabin-1 replication but not Sabin-2 or Sabin-3 via direct interaction with the PV 5'UTR. Hypochromicity data showed miR-134 binding to Sabin-1 and 3 but not Sabin-2 IRES. Transfection of a miR-134 mimic repressed translation of Sabin-1 5'UTR driven luciferase validating the mechanism of miR-134-mediated repression of Sabin-1. Further, site directed mutagenesis of the miR-134 binding site in Sabin-1 IRES relieved miR-134-mediated repression indicating that these regulatory molecules have an important role in regulating the host gene response to PV. Binding of miR-134 to Sabin-1 IRES caused degradation of the IRES transcript in a miR-134 and sequence specific manner. The miR-134 binding site was found to be highly conserved in wild type PV-1 as well as EV71 strains indicating that miR-134 may regulate function of these IRES sequences in circulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627394PMC
http://dx.doi.org/10.1038/s41598-017-12860-zDOI Listing

Publication Analysis

Top Keywords

mir-134 binding
12
mir-134
8
mir-134 regulate
8
mir-134-mediated repression
8
binding site
8
sabin-1 ires
8
ires
6
sabin-1
6
microrna-134 regulates
4
regulates poliovirus
4

Similar Publications

Unraveling the mechanism of microRNA-134 in colon cancer progression: Targeting KRAS and PIK3CA for cell cycle control and histone deacetylase regulation.

Exp Cell Res

December 2024

Medical Biotechnology lab, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Rajiv Gandhi Salai (OMR), Kelambakkam, Chennai, Tamil Nadu, 603 103, India. Electronic address:

Colon cancer is the leading cause of cancer-related deaths worldwide. MicroRNAs (miRNAs) are key regulators of gene expression, often dysregulated in colon cancer. This study aims to elucidate the therapeutic role of miR-134-5p as a tumor suppressor miRNA in colon cancer cells.

View Article and Find Full Text PDF

Background: This study aimed to investigate the key molecular mechanisms underlying keloid pathogenesis by integrating oxidative stress, mitochondria, and immune cells.

Methods: Transcriptome sequencing (mRNA, lncRNA, and circRNA expression data), proteomic sequencing, and small RNA sequencing analyses of lesional and non-lesional skin of patients with keloids and healthy control (normal) skin were conducted. By integrating mRNA and publicly available gene expression data (GSE158395), differentially expressed genes related to oxidative stress and mitochondrial function in keloids were identified.

View Article and Find Full Text PDF
Article Synopsis
  • - This research investigates how microRNA, specifically hsa-miR-134-5p, plays a role in the aging process of human endothelial progenitor cells (EPCs) and its impact on angiogenic activity.
  • - Hsa-miR-134-5p is found to hinder the activity of the TAB1 protein, leading to reduced p38 activation, which is associated with improved angiogenesis in senescent EPCs.
  • - The study suggests that hsa-miR-134-5p could potentially rejuvenate aged EPCs and that its expression levels in peripheral blood can be linked to cardiovascular risk assessment, especially in older adults.
View Article and Find Full Text PDF

Our research investigated the effects of hsa-miR-134-5p on glioma progression, focusing on its interaction with the BDNF/ERK signaling pathway. U251 and U87 cell lines were analyzed post-transfection with hsa-miR-134-5p mimics and inhibitors, confirming the miRNA's binding to BDNF using dual luciferase assays. Q-PCR was employed to measure expression changes, revealing that hsa-miR-134-5p markedly inhibited glioma cell proliferation, migration, and invasion, as evidenced by CCK8, monoclonal formation, and Transwell assays.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) repress translation of target mRNAs by associating with Argonaute (Ago) proteins in the RNA-induced silencing complex (RISC) to modulate protein expression. Specific miRNAs are required for NMDA receptor (NMDAR)-dependent synaptic plasticity by repressing the translation of proteins involved in dendritic spine morphogenesis. Rapid NMDAR-dependent silencing of Limk1 is essential for spine shrinkage and requires Ago2 phosphorylation at S387.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!