Tryptophan-Derived 3-Hydroxyanthranilic Acid Contributes to Angiotensin II-Induced Abdominal Aortic Aneurysm Formation in Mice In Vivo.

Circulation

Section of Molecular Medicine, Department of Medicine, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City (Q.W., M.-H.Z.). Center for Molecular and Translational Medicine, Georgia State University, Atlanta (Y.D., P.S., H.Z., I.O.,M.-H.Z.). State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (Y.-N.D., H.C., D.L.).

Published: December 2017

Background: Abnormal amino acid metabolism is associated with vascular disease. However, the causative link between dysregulated tryptophan metabolism and abdominal aortic aneurysm (AAA) is unknown.

Methods: Indoleamine 2,3-dioxygenase (IDO) is the first and rate-limiting enzyme in the kynurenine pathway of tryptophan metabolism. Mice with deficiencies in both apolipoprotein e (Apoe) and IDO (Apoe/IDO) were generated by cross-breeding IDO mice with Apoe mice.

Results: The acute infusion of angiotensin II markedly increased the incidence of AAA in Apoe mice, but not in Apoe/IDO mice, which presented decreased elastic lamina degradation and aortic expansion. These features were not altered by the reconstitution of bone marrow cells from IDO mice. Moreover, angiotensin II infusion instigated interferon-γ, which induced the expression of IDO and kynureninase and increased 3-hydroxyanthranilic acid (3-HAA) levels in the plasma and aortas of Apoe mice, but not in IDO mice. Both IDO and kynureninase controlled the production of 3-HAA in vascular smooth muscle cells. 3-HAA upregulated matrix metallopeptidase 2 via transcription factor nuclear factor-κB. Furthermore, kynureninase knockdown in mice restrained 3-HAA, matrix metallopeptidase 2, and resultant AAA formation by angiotensin II infusion. Intraperitoneal injections of 3-HAA into Apoe and Apoe/IDO mice for 6 weeks increased the expression and activity of matrix metallopeptidase 2 in aortas without affecting metabolic parameters. Finally, human AAA samples had stronger staining with the antibodies against 3-HAA, IDO, and kynureninase than those in adjacent nonaneurysmal aortic sections of human AAA samples.

Conclusions: These data define a previously undescribed causative role for 3-HAA, which is a product of tryptophan metabolism, in AAA formation. Furthermore, these findings suggest that 3-HAA reduction may be a new target for treating cardiovascular diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716872PMC
http://dx.doi.org/10.1161/CIRCULATIONAHA.117.030972DOI Listing

Publication Analysis

Top Keywords

tryptophan metabolism
12
ido mice
12
ido kynureninase
12
matrix metallopeptidase
12
mice
10
3-hydroxyanthranilic acid
8
abdominal aortic
8
aortic aneurysm
8
ido
8
apoe mice
8

Similar Publications

Background And Objectives: Despite the absence of acute lesion activity in multiple sclerosis (MS), chronic neurodegeneration continues to progress, and a potential underlying mechanism could be the kynurenine pathway (KP). Prolonged activation of the KP from chronic inflammation is known to exacerbate the progression of neurodegenerative diseases through the production of neurotoxic metabolites. Among the 8 KP metabolites, six of them, namely kynurenine (KYN), 3-hydroxylkynurenine (3HK), anthranilic acid (AA), kynurenic acid (KYNA), and quinolinic acid (QUIN), have been associated with neurodegeneration.

View Article and Find Full Text PDF

L-Carnitine is widely recognized for its involvement in lipid metabolism, but its effects on muscle quality and gut health in carp have not been well studied. The research aimed to investigate how L-carnitine influences muscle quality and intestinal health in high-fat-fed carp. The study was separated into four groups that received either the standard diet, a high-fat diet (HFD), or a HFD supplemented with 500 mg/kg L-carnitine (LLC), or a HFD supplemented with 1000 mg/kg L-carnitine (HLC) for 56 days.

View Article and Find Full Text PDF

Objectives: To explore the correlation of serum tryptophan level with 90-day mortality risk in patients with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF).

Methods: This retrospective study was conducted among 108 patients with HBV-ACLF, whose survival outcomes within 90 days after diagnosis were recorded. The correlation of baseline serum tryptophan levels measured by high-performance liquid chromatography with 90-day mortality of the patients was analyzed, and the predictive value of serum tryptophan for 90-day mortality was explored.

View Article and Find Full Text PDF

The structural groups of 2-oxindole and tricyclic 3a-hydroxy-hexahydropyrrolo-[2,3-]indole (HO-HPI) are important pharmacophores. Chemical synthesis of complex alkaloids containing a 2-oxindole or HO-HPI moiety, especially the latter one, has been a long-standing challenge. Herein, we characterized the P450 enzyme AfnD, and its homologue proteins, HmtT, ClpD, KtzM, and LtzR, as cyclopeptide 2-oxindole and HO-HPI monooxygenases (cpOPMOs) that could introduce a 2-oxindole or HO-HPI moiety into the tryptophan-containing cyclopeptides in a pH-dependent manner.

View Article and Find Full Text PDF

This investigation represents a pioneering effort to examine the therapeutic effects of PCB specifically in the context of CFA-induced mice, as well as to elucidate the underlying mechanisms that facilitate such effects. Our study utilized advanced methodologies, namely high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS)-based metabolomics, alongside comprehensive multivariate data analysis, to identify a distinctive metabolic profile associated with acute inflammation. Through our analyses, we discovered that several potential metabolites were significantly implicated in a variety of critical metabolic pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!