RING finger protein 113A regulates C-X-C chemokine receptor type 4 stability and signaling.

Am J Physiol Cell Physiol

Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania;

Published: November 2017

As an α-chemokine receptor specific for stromal-derived-factor-1 (SDF-1, also called CXCL12), C-X-C chemokine receptor type 4 (CXCR4) plays a vital role in chemotactically attracting lymphocytes during inflammation. CXCR4 also regulates HIV infection due to its role as one of the chemokine coreceptors for HIV entry into CD4 T cells. Chemokine receptors and their signaling pathways have been shown to be regulated by the process of ubiquitination, a posttranslational modification, guided by ubiquitin E3 ligases, which covalently links ubiquitin chains to lysine residues within target substrates. Here we describe a novel mechanism regulating CXCR4 protein levels and subsequent CXCR4/CXCL12 signaling pathway through the ubiquitination and degradation of the receptor in response to ligand stimulation. We identify that an uncharacterized really interesting new gene (RING) finger ubiquitin E3 ligase, RING finger protein 113A (RNF113A), directly ubiquitinates CXCR4 in cells, leading to CXCR4 degradation, and therefore disrupts the signaling cascade. We determined that the K331 residue within CXCR4 is essential for RNF113A-mediated ubiquitin conjugation. Overexpression of RNF113A significantly reduces CXCL12-induced kinase activation in HeLa cells, whereas knockdown enhances CXCL12-induced downstream signaling. Further, RNF113A expression and silencing directly affect cell motility in a wound healing assay. These results suggest that RNF113A plays an important role in CXCR4 signaling through the ubiquitination and degradation of CXCR4. This mechanistic study might provide new understanding of HIV immunity and neutrophil activation and motility regulated by CXCR4.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792167PMC
http://dx.doi.org/10.1152/ajpcell.00193.2017DOI Listing

Publication Analysis

Top Keywords

ring finger
12
cxcr4
9
finger protein
8
protein 113a
8
c-x-c chemokine
8
chemokine receptor
8
receptor type
8
ubiquitination degradation
8
signaling
6
113a regulates
4

Similar Publications

Lysosomes are the major cellular organelles responsible for nutrient recycling and degradation of cellular material. Maintenance of lysosomal integrity is essential for cellular homeostasis and lysosomal membrane permeabilization (LMP) sensitizes toward cell death. Damaged lysosomes are repaired or degraded via lysophagy, during which glycans, exposed on ruptured lysosomal membranes, are recognized by galectins leading to K48- and K63-linked poly-ubiquitination (poly-Ub) of lysosomal proteins followed by recruitment of the macroautophagic/autophagic machinery and degradation.

View Article and Find Full Text PDF

Objectives: This study aimed to evaluate the integrity of non-sterile, powder-free latex gloves used by dental students in various dental specialties.

Materials And Methods: This cross-sectional study involved dental students from Ajman University who provided gloves during various dental specialty procedures. A total of 177 pairs of latex examination powder-free gloves were included and categorized as follows: 43 pairs (24.

View Article and Find Full Text PDF

Dupuytren's contracture is a chronic condition that affects the palmar fascia, leading to progressive flexion of the fingers, particularly the ring and little fingers. This article provides an in-depth review of the current understanding of the condition and its management. Commonly seen in older men of Northern European descent, Dupuytren's can significantly impair hand function as contractures develop.

View Article and Find Full Text PDF

ZAP is an antiviral protein that binds to and depletes viral RNA, which is often distinguished from vertebrate host RNA by its elevated CpG content. Two ZAP cofactors, TRIM25 and KHNYN, have activities that are poorly understood. Here, we show that functional interactions between ZAP, TRIM25 and KHNYN involve multiple domains of each protein, and that the ability of TRIM25 to multimerize via its RING domain augments ZAP activity and specificity.

View Article and Find Full Text PDF

RNF5 exacerbates steatotic HCC by enhancing fatty acid oxidation via the improvement of CPT1A stability.

Cancer Lett

December 2024

Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Clinical Research Center for minimally invasive dianosis and treatment of hepatobiliary and pancreatic diseases, Hubei, China; Taikang Center for Life and Medical Sciences of Wuhan University. Electronic address:

Non-alcoholic fatty liver disease (NAFLD) is expected to become the leading risk factor for liver cancer, surpassing viral hepatitis. Unlike viral hepatitis-related hepatocellular carcinoma (HCC), the role of excessive nutrient supply in steatotic HCC is not well understood, hindering effective prevention and treatment strategies. Therefore, it is crucial to identify key molecules in the pathogenesis of steatotic HCC, investigate changes in metabolic reprogramming due to excessive fatty acid (FA) supply, understand its molecular mechanisms, and find potential therapeutic targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!