Reactive oxygen species (ROS) are continuously produced as a by-product of mitochondrial metabolism and eliminated via antioxidant systems. Regulation of mitochondrially produced ROS is required for proper cellular function, adaptation to metabolic stress, and bypassing cellular senescence. Here, we report non-canonical regulation of the cellular energy sensor AMP-activated protein kinase (AMPK) by mitochondrial ROS (mROS) that functions to maintain cellular metabolic homeostasis. We demonstrate that mitochondrial ROS are a physiological activator of AMPK and that AMPK activation triggers a PGC-1α-dependent antioxidant response that limits mitochondrial ROS production. Cells lacking AMPK activity display increased mitochondrial ROS levels and undergo premature senescence. Finally, we show that AMPK-PGC-1α-dependent control of mitochondrial ROS regulates HIF-1α stabilization and that mitochondrial ROS promote the Warburg effect in cells lacking AMPK signaling. These data highlight a key function for AMPK in sensing and resolving mitochondrial ROS for stress resistance and maintaining cellular metabolic balance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2017.09.026 | DOI Listing |
Biochem Biophys Rep
March 2025
Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami Ward, Hiroshima City, Hiroshima, 731-0153, Japan.
Methylmalonic acid (MMA) is a small molecule produced during the metabolism of propionate and branched-chain amino acids. Recently, it has been reported that the blood concentration of MMA increases with age and promotes lung cancer metastasis. However, little is known regarding its effects on cancers other than lung cancer.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China.
Background: Continuous fermentation offers advantages in improving production efficiency and reducing costs, making it highly competitive for industrial ethanol production. A key requirement for Saccharomyces cerevisiae strains used in this process is their tolerance to high ethanol concentrations, which enables them to adapt to continuous fermentation conditions. To explore how yeast cells respond to varying levels of ethanol stress during fermentation, a two-month continuous fermentation was conducted.
View Article and Find Full Text PDFBMC Complement Med Ther
January 2025
Division of Pharmacology and Biopharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand.
Background: Plant flavonoids such as quercetin are useful for both the therapeutic and preventive care of a variety of illnesses. Nevertheless, their antitumor efficacy against KON oral cancer is still unknown. Therefore, the aim of this investigation was to examine quercetin's anti-growth, anti-migrative, and anti-invasive characteristics.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China. Electronic address:
The evolutionarily conserved and multifunctional B-cell lymphoma2 (Bcl2)-associated athanogene proteins (BAGs), serving as co-chaperone regulators, play a pivotal role in orchestrating plant stress responses. In this study, the possible involvement of tomato SlBAG genes in resistance to Botrytis cinerea was examined. The SlBAG genes respond with different expression change patterns to B.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Department of Neurosurgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, P. R. China. Electronic address:
The activation of astrocytes in the injured lesion induces the progression of spinal cord injury (SCI). However, adverse side-effects during systemic administration have limited applications. Exosomes (Exos) are an emerging clinical treatment method that exerts anti-inflammatory effects by reducing pro-inflammatory factors and promoting functional recovery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!