Background: Pathogenic and allergenic bacteria and fungi within the indoors can bring detrimental health effects on the occupants. We previously studied the bacterial communities found in households located throughout Hong Kong as well as the skin surfaces of the occupants. As a complementary study, here, we investigated the fungal communities (mycobiome) in the same residences and occupants and identified factors that are important in shaping their diversity, composition, distribution, and dispersal patterns.
Results: We observed that common skin and environmental fungal taxa dominated air, surface, and skin samples. Individual and touch frequency strongly and respectively shaped the fungal community structure on occupant skin and residential surfaces. Cross-domain analysis revealed positive correlations between bacterial and fungal community diversity and composition, especially for skin samples. SourceTracker prediction suggested that some fungi can be transferred bidirectionally between surfaces and skin sites, but bacteria showed a stronger dispersal potential. In addition, we detected a modest but significant association between indoor airborne bacterial composition and geographic distance on a city-wide scale, a pattern not observed for fungi. However, the distance-decay effects were more pronounced at shorter local scale for both communities, and airflow might play a prominent role in driving the spatial variation of the indoor airborne mycobiome.
Conclusions: Our study suggests that occupants exert a weaker influence on surface fungal communities compared to bacterial communities, and local environmental factors, including air currents, appear to be stronger determinants of indoor airborne mycobiome than ventilation strategy, human occupancy, and room type.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5628474 | PMC |
http://dx.doi.org/10.1186/s40168-017-0346-7 | DOI Listing |
Microorganisms
December 2024
Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Coyoacán, Ciudad Universitaria, Mexico City 04510, Mexico.
Airborne fungi are widely distributed in the environment and originate from various sources like soil, plants, decaying organic matter, and even indoor environments. Exposure to airborne fungal spores can cause allergic reactions, asthma, and respiratory infections. Certain fungi can cause serious infections, particularly in individuals with weakened immune systems.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Environmental Science, University of Arizona, Tucson, AZ 85719, USA.
Resuspended particles from human activities can contribute to pathogen exposure via airborne fomite contamination in built environments. Studies investigating the dissemination of resuspended viruses are limited. The goal of this study was to explore viral dissemination after aerosolized resuspension via human activities on indoor flooring.
View Article and Find Full Text PDFPathogens
November 2024
National Public Health and Pharmaceutical Centre, 1097 Budapest, Hungary.
The quality of indoor air is dependent on a number of factors, including the presence of microorganisms that colonize the building materials. The potential for health risks associated with microbial contamination is a significant concern during the renovation of buildings. The aim of this study was to assess the impact of two reconstruction methods for historic buildings on air quality.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
Inspired by the effects of solar or UV radiation on the decay of airborne bacteria during their transport, this study investigated the effect of UVA on the decay of airborne bacteria from cattle houses and analyzed the potential use of UVA to reduce indoor airborne bacteria under laboratory conditions. Airborne bacteria from the cattle source were generated and released into a small-scale test chamber (1.5 m) with different strategies according to the different objectives in decay tests and simulated sterilization tests.
View Article and Find Full Text PDFEnviron Pollut
January 2025
State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan province, China. Electronic address:
Dental operations inherently involve a high risk of airborne cross-infection among medical staff and patients due to the exposure of respiratory secretions, which contain pathogenic microorganisms and typically spread in the form of aerosols. In order to contribute to the understanding of aerosol dynamics during dental operation and efficiently mitigate their dispersion and deposition through appropriate ventilation, 3D numerical simulations and full-scale experimental measurements were performed in this study. The indoor airflow distribution and dynamic aerosol behaviors observed under three optimized ventilation schemes (Scenario I-III) were compared with those observed under the current ventilation system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!