The nonribosomal enterotoxin tilivalline was the first naturally occurring pyrrolobenzodiazepine to be linked to disease in the human intestine. Since the producing organism Klebsiella oxytoca is part of the intestinal microbiota and the pyrrolobenzodiazepine causes the pathogenesis of colitis it is important to understand the biosynthesis and regulation of tilivalline activity. Here we report the biosynthesis of tilivalline and show that this nonribosomal peptide assembly pathway initially generates tilimycin, a simple pyrrolobenzodiazepine with cytotoxic properties. Tilivalline results from the non-enzymatic spontaneous reaction of tilimycin with biogenetically generated indole. Through a chemical total synthesis of tilimycin we could corroborate the predictions made about the biosynthesis. Production of two cytotoxic pyrrolobenzodiazepines with distinct functionalities by human gut resident Klebsiella oxytoca has important implications for intestinal disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5698749PMC
http://dx.doi.org/10.1002/anie.201707737DOI Listing

Publication Analysis

Top Keywords

tilivalline nonribosomal
8
klebsiella oxytoca
8
tilivalline
5
biosynthesis
4
biosynthesis enterotoxic
4
pyrrolobenzodiazepine
4
enterotoxic pyrrolobenzodiazepine
4
pyrrolobenzodiazepine natural
4
natural product
4
product tilivalline
4

Similar Publications

The transcriptional regulator Lrp activates the expression of genes involved in the biosynthesis of tilimycin and tilivalline enterotoxins in .

mSphere

December 2024

Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.

The toxigenic strains secrete tilymicin and tilivalline enterotoxins, which cause antibiotic-associated hemorrhagic colitis. Both enterotoxins are non-ribosomal peptides synthesized by enzymes encoded in two divergent operons clustered in a pathogenicity island. The transcriptional regulator Lrp (eucine-responsive egulatory rotein) controls the expression of several bacterial genes involved in virulence.

View Article and Find Full Text PDF

cAMP Receptor Protein Positively Regulates the Expression of Genes Involved in the Biosynthesis of Tilivalline Cytotoxin.

Front Microbiol

September 2021

Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.

is a resident of the human gut. However, certain toxigenic strains exist that secrete the nonribosomal peptide tilivalline (TV) cytotoxin. TV is a pyrrolobenzodiazepine that causes antibiotic-associated hemorrhagic colitis (AAHC).

View Article and Find Full Text PDF

Objective: Toxin-producing Klebsiella oxytoca causes antibiotic-associated haemorrhagic colitis (AAHC). The disease-relevant cytotoxins tilivalline and tilimycine produced by certain K. oxytoca isolates are encoded by the non-ribosomal peptide synthetase genes A (npsA) and B (npsB).

View Article and Find Full Text PDF

Non-ribosomal peptides are one class of bacterial metabolites formed by gut microbiota. Intestinal resident Klebsiella oxytoca produces two pyrrolobenzodiazepines, tilivalline and tilimycin, via the same nonribosomal biosynthesis platform. These molecules cause human disease by genotoxic and tubulin inhibitory activities resulting in apoptosis of the intestinal epithelium, loss of barrier integrity and ultimately colitis.

View Article and Find Full Text PDF

Establishing causal links between bacterial metabolites and human intestinal disease is a significant challenge. This study reveals the molecular basis of antibiotic-associated hemorrhagic colitis (AAHC) caused by intestinal resident Colitogenic strains produce the nonribosomal peptides tilivalline and tilimycin. Here, we verify that these enterotoxins are present in the human intestine during active colitis and determine their concentrations in a murine disease model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!