Changing mRNA stability is a major post-transcriptional way of controlling gene expression, particularly in newly encountered conditions. As the concentration of mRNA is the result of an equilibrium between transcription and degradation, it is generally assumed that at constant transcription, any change in mRNA concentration is the consequence of mRNA stabilization or destabilization. However, the literature reports many cases of opposite variations in mRNA concentration and stability in bacteria. Here, we analyzed the causal link between the concentration and stability of mRNA in two phylogenetically distant bacteria Escherichia coli and Lactococcus lactis. Using reporter mRNAs, we showed that modifying the stability of an mRNA had unpredictable effects, either higher or lower, on its concentration, whereas increasing its concentration systematically reduced stability. This inverse relationship between the concentration and stability of mRNA was generalized to native genes at the genome scale in both bacteria. Higher mRNA turnover in the case of higher concentrations appears to be a simple physical mechanism to regulate gene expression in the bacterial kingdom. The consequences for bacterial adaptation of this control of the stability of an mRNA by its concentration are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5714132 | PMC |
http://dx.doi.org/10.1093/nar/gkx781 | DOI Listing |
Nat Rev Genet
January 2025
Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
mRNA degradation pathways have key regulatory roles in gene expression. The intrinsic stability of mRNAs in the cytoplasm of eukaryotic cells varies widely in a gene- and isoform-dependent manner and can be regulated by cellular cues, such as kinase signalling, to control mRNA levels and spatiotemporal dynamics of gene expression. Moreover, specialized quality control pathways exist to rid cells of non-functional mRNAs produced by errors in mRNA processing or mRNA damage that negatively impact translation.
View Article and Find Full Text PDFCell Death Discov
January 2025
School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
Methyltransferase-like 1 (METTL1)-mediated m7G modification is a common occurrence in various RNA species, including mRNAs, tRNAs, rRNAs, and miRNAs. Recent evidence suggests that this modification is linked to the development of several cancers, making it a promising target for cancer therapy. However, the specific role of m7G modification in cutaneous squamous cell carcinoma (cSCC) is not well understood.
View Article and Find Full Text PDFRedox Rep
December 2025
Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.
Objective: Myocardial ischemia-reperfusion injury (MIRI) is a highly complex disease with high morbidity and mortality. Studying the molecular mechanism of MIRI and discovering new targets are crucial for the future treatment of MIRI.
Methods: We constructed the MIRI rat model and hypoxia/reoxygenation (H/R) injury cardiomyocytes model.
Microbiol Spectr
January 2025
Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India.
Alba domain-containing proteins are ubiquitously found in archaea and eukaryotes. By binding to either DNA, RNA, or DNA:RNA hybrids, these proteins function in genome stabilization, chromatin organization, gene regulation, and/or translational modulation. In the malaria parasite , six Alba domain proteins PfAlba1-6 have been described, of which PfAlba1 has emerged as a "master regulator" of translation during parasite intra-erythrocytic development (IED).
View Article and Find Full Text PDFFront Immunol
January 2025
Traditional Chinese Medicine Department of Orthopaedic and Traumatic, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Colorectal cancer (CRC) is one of the most prevalent malignant tumors in the world, and its occurrence and development are closely related to the complex immune regulatory mechanisms. As the first barrier of the body's defense, innate immunity plays a key role in tumor immune surveillance and anti-tumor response, in which type I/III interferon (IFN) is an important mediator with significant antiviral and anti-tumor functions. 5-methylcytosine (m5C) modification of RNA is a key epigenetic regulation that promotes the expression of CRC oncogenes and immune-related genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!