Human embryos from induced pluripotent stem cell-derived gametes: ethical and quality considerations.

Regen Med

Division of Women's Health, Faculty of Life Sciences and Medicine, King's College London and Assisted Conception Unit, Guy's Hospital, London SE1 9RT, UK.

Published: September 2017

Protocols for successful differentiation of male and female gametes from induced pluripotent stem cells have been published. Although culture of precursor cells in a natural microenvironment remains necessary to achieve terminal differentiation, the creation of human preimplantation embryos from induced pluripotent stem cell-derived gametes is technically feasible. Such embryos could provide a solution to the scarcity of human cleavage-stage embryos donated for research. Here, we discuss current technology, major research-related ethical concerns and propose the norms that would assure the quality and reliability of such embryos.

Download full-text PDF

Source
http://dx.doi.org/10.2217/rme-2017-0052DOI Listing

Publication Analysis

Top Keywords

induced pluripotent
12
pluripotent stem
12
embryos induced
8
stem cell-derived
8
cell-derived gametes
8
human embryos
4
gametes ethical
4
ethical quality
4
quality considerations
4
considerations protocols
4

Similar Publications

The generation of retinal models from human induced pluripotent stem cells holds significant potential for advancing our understanding of retinal development, neurodegeneration, and the in vitro modeling of neurodegenerative disorders. The retina, as an accessible part of the central nervous system, offers a unique window into these processes, making it invaluable for both study and early diagnosis. This study investigates the impact of the Frontotemporal Dementia-linked IVS 10 + 16 MAPT mutation on retinal development and function using 2D and 3D retinal models derived from human induced pluripotent stem cells.

View Article and Find Full Text PDF

Myocardial infarction is a condition where the heart muscle is damaged due to clogged coronary arteries. There are limited treatment options for treating myocardial infarction. Microneedle patches have recently become popular as a possibly viable therapy for myocardial.

View Article and Find Full Text PDF

Cardiomyocytes can be implanted to remuscularize the failing heart. Challenges include sufficient cardiomyocyte retention for a sustainable therapeutic impact without intolerable side effects, such as arrhythmia and tumour growth. We investigated the hypothesis that epicardial engineered heart muscle (EHM) allografts from induced pluripotent stem cell-derived cardiomyocytes and stromal cells structurally and functionally remuscularize the chronically failing heart without limiting side effects in rhesus macaques.

View Article and Find Full Text PDF

Blood transfusion plays a vital role in modern medicine, but frequent shortages occur. Ex vivo manufacturing of red blood cells (RBCs) from universal donor cells offers a potential solution, yet the high cost of recombinant cytokines remains a barrier. Erythropoietin (EPO) signaling is crucial for RBC development, and EPO is among the most expensive media components.

View Article and Find Full Text PDF

Clinical perspective on pluripotent stem cells derived cell therapies for the treatment of neurodegenerative diseases.

Adv Drug Deliv Rev

January 2025

Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel; Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel.

Self-renewal capacity and potential to differentiate into almost any cell type of the human body makes pluripotent stem cells a valuable starting material for manufacturing of clinical grade cell therapies. Neurodegenerative diseases are characterized by gradual loss of structure or function of neurons, often leading to neuronal death. This results in gradual decline of cognitive, motor, and physiological functions due to the degeneration of the central nervous systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!