Strain-induced lattice deformation affects electron hopping between the atoms. This effectively gives rise to a gauge field which impacts on the charge transport. In graphene, such gauge field is associated with a vector potential which mimics that of a magnetic field. Understanding the impact of the gauge field on charge transport is of essential importance for emerging topics including straintronics and valleytronics in two-dimensional materials. While extensive theoretical works have been carried out over the past decade, experimental progress has been largely limited to local probe and optical studies. Experimental charge transport study has been baffled by the challenge in creating an effective and independent tuning knob of strain without compromising the quality of graphene. Here we studied high quality suspended graphene field effect transistors fabricated on flexible Polyimide substrates. Applying uniaxial strain by bending the substrate, we observed a strain-induced resistivity with power-law carrier density dependence. The power factor is found to be correlated with the surface fractal dimension of the rippled graphene, in good agreement with the random gauge field scattering theory. Both phase coherent transport and magnetotransport properties are found to be strain-dependent, which can be understood in terms of a strain-tunable disorder.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.7b03618 | DOI Listing |
Data Brief
February 2025
Faculty of Civil and Environmental Engineering, Technion, Haifa 320003, Israel.
Effective spatio-temporal measurements of water surface elevation (water waves) in laboratory experiments are essential for scientific and engineering research. Existing techniques are often cumbersome, computationally heavy and generally suffer from limited wavenumber/frequency response. To address these challenges a novel method was developed, using polarization filter equipped camera as the main sensor and Machine Learning (ML) algorithms for data processing [1,2].
View Article and Find Full Text PDFPhys Rev Lett
December 2024
National University of Singapore, Department of Materials Science and Engineering, 9 Engineering Drive 1, Singapore 117575.
By virtue of being atomically thin, the electronic properties of heterostructures built from two-dimensional materials are strongly influenced by atomic relaxation. The atomic layers behave as flexible membranes rather than rigid crystals. Here we develop an analytical theory of lattice relaxation in twisted moiré materials.
View Article and Find Full Text PDFPNAS Nexus
January 2025
Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA.
DNA has found increasing applications in molecular engineering, yet its chiral property has rarely been utilized. Here, we report a mirror-image experiment using naturally occurring D-DNA and its enantiomer L-DNA to sort a chiral mixture of single-wall carbon nanotubes (SWCNTs). We find that parity conservation leads to a robust experimental outcome: changing DNA chirality results in handedness inversion of the purified nanotube.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
February 2025
NASA Ames Research Center, Moffett Field, CA 94035, United States.
The BioSentinel CubeSat was deployed on the Artemis-I mission in November 2022 and has been continuously transmitting physical measurements of the space radiation environment since that time. Just before mission launch, we published computational model predictions of the galactic cosmic ray exposure expected inside BioSentinel for multiple locations and configurations. The predictions utilized models for the ambient galactic cosmic ray environment, radiation physics and transport, and BioSentinel geometry.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Mechanical Engineering, Yeungnam University, 280, Daehak-ro, Gyeongsan 38541, Republic of Korea.
Carbon nanomaterials, particularly carbon nanotubes (CNTs), are widely used as reinforcing fillers in rubber composites for advanced mechanical and electrical applications. However, the influence of rubber functionality and its interactions with CNTs remains underexplored. This study investigates electroactive elastomeric composites fabricated with CNTs in two common diene rubbers: natural rubber (NR) and acrylonitrile-butadiene rubber (NBR), each with distinct functionalities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!