Photocatalysts for water splitting are the core of renewable energy technologies, such as hydrogen fuel cells. The development of photoelectrode materials with high efficiency and low corrosivity has great challenges. In this study, we report new strategy to improve performance of tantalum nitride (TaN) nanocrystals as promising photoanode materials for visible-light-driven photoelectrochemical (PEC) water splitting cells. The surface of TaN nanocrystals was modified with boron whose content was controlled, with up to 30% substitution of Ta. X-ray photoelectron spectroscopy revealed that boron was mainly incorporated into the surface oxide layers of the TaN nanocrystals. The surface modification with boron increases significantly the solar energy conversion efficiency of the water-splitting PEC cells by shifting the onset potential cathodically and increasing the photocurrents. It reduces the interfacial charge-transfer resistance and increases the electrical conductivity, which could cause the higher photocurrents at lower potential. The onset potential shift of the PEC cell with the boron incorporation can be attributed to the negative shift of the flat band potential. We suggest that the boron-modified surface acts as a protection layer for the TaN nanocrystals, by catalyzing effectively the water splitting reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b09040DOI Listing

Publication Analysis

Top Keywords

tan nanocrystals
20
water splitting
16
visible-light-driven photoelectrochemical
8
onset potential
8
nanocrystals
5
boron
5
surface-modified tan
4
nanocrystals boron
4
boron enhanced
4
enhanced visible-light-driven
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!