Bivariate flow cytometric analysis and sorting of different types of maize starch grains.

Cytometry A

Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.

Published: February 2018

Particle-size distribution, granular structure, and composition significantly affect the physicochemical properties, rheological properties, and nutritional function of starch. Flow cytometry and flow sorting are widely considered convenient and efficient ways of classifying and separating natural biological particles or other substances into subpopulations, respectively, based on the differential response of each component to stimulation by a light beam; the results allow for the correlation analysis of parameters. In this study, different types of starches isolated from waxy maize, sweet maize, high-amylose maize, pop maize, and normal maize were initially classified into various subgroups by flow cytometer and then collected through flow sorting to observe their morphology and particle-size distribution. The results showed that a 0.25% Gelzan solution served as an optimal reagent for keeping individual starch particles homogeneously dispersed in suspension for a relatively long time. The bivariate flow cytometric population distributions indicated that the starches of normal maize, sweet maize, and pop maize were divided into two subgroups, whereas high-amylose maize starch had only one subgroup. Waxy maize starch, conversely, showed three subpopulations. The subgroups sorted by flow cytometer were determined and verified in terms of morphology and granule size by scanning electron microscopy and laser particle distribution analyzer. Results showed that flow cytometry can be regarded as a novel method for classifying and sorting starch granules. © 2017 International Society for Advancement of Cytometry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cyto.a.23261DOI Listing

Publication Analysis

Top Keywords

maize starch
12
maize
11
bivariate flow
8
flow cytometric
8
particle-size distribution
8
flow cytometry
8
flow sorting
8
waxy maize
8
maize sweet
8
sweet maize
8

Similar Publications

regulates carbohydrate metabolic functions of the gut microbiome in C57BL/6 mice.

Gut Microbes

December 2025

Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, USA.

The probiotic impact of microbes on host metabolism and health depends on both host genetics and bacterial genomic variation. is the predominant human gut commensal emerging as a next-generation probiotic. Although this bacterium exhibits substantial intraspecies diversity, it is unclear whether genetically distinct strains might lead to functional differences in the gut microbiome.

View Article and Find Full Text PDF

This study assessed the anti-diabetic potential and bioactive constituents of ten Sri Lankan medicinal herbs. Initial screening of aqueous extracts for starch-digesting enzyme inhibition prioritised three plants with notable activity ( ≤ 0.05), for further assessment using methanolic extracts: (PE), (CA), and (HI).

View Article and Find Full Text PDF

Background: Brexanolone (Zulresso) and zuranolone (Zurzuvae) are two synthetic neuroactive steroids that were approved by the U.S. Food and Drug Administration in March 2019 (as an intravenous treatment) and August 2023 (as an oral treatment) respectively, for the treatment of postpartum depression.

View Article and Find Full Text PDF

Comparative transcriptome and metabolome analysis of sweet potato ( (L.) Lam.) tuber development.

Front Plant Sci

January 2025

Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou, China.

Introduction: Sweet potato is an important food, feed and industrial raw material, and its tubers are rich in starch, carotenoids and anthocyanins.

Methods: To elucidate the gene expression regulation and metabolic characteristics during the development of sweet potato tubers, transcriptomic and metabolomic analyses were performed on the tubers of three different sweet potato varieties at three developmental stages (70, 100, and 130 days (d)).

Results: RNA-seq analysis revealed that 16,303 differentially expressed genes (DEGs) were divided into 12 clusters according to their expression patterns, and the pathways of each cluster were annotated.

View Article and Find Full Text PDF

Light provides the necessary energy for plant photosynthesis, which allows plants to produce organic matter and energy conversion, during plant growth and development. Light provides material energy to plants as the basis for cell division and differentiation, chlorophyll synthesis, tissue growth and stomatal movement, and light intensity, photoperiod, and light quality play important roles in these processes. There are several regulatory mechanisms involved in sugar metabolism in plants, and light, as one of the regulatory factors, affects cell wall composition, starch granules, sucrose synthesis, and vascular bundle formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!