Purpose: In this work, we present an 8-channel transceiver (Tx/Rx) 7-channel receive (Rx) radiofrequency (RF) coil setup for 7 T ultrahigh-field MR imaging of the shoulder.

Methods: A C-shaped 8-channel Tx/Rx coil was combined with an anatomically close-fitting 7-channel Rx-only coil. The safety and performance parameters of this coil setup were evaluated on the bench and in phantom experiments. The 7 T MR imaging performance of the shoulder RF coil setup was evaluated in in vivo measurements using a 3D DESS, a 2D PD-weighted TSE sequence, and safety supervision based on virtual observation points.

Results: Distinct SNR gain and acceleration capabilities provided by the additional 7-channel Rx-only coil were demonstrated in phantom and in vivo measurements. The power efficiency indicated good performance of each channel and a maximum B of 19 μT if the hardware RF power limits of the MR system were exploited. MR imaging of the shoulder was demonstrated with clinically excellent image quality and submillimeter spatial resolution.

Conclusions: The presented 8-channel transceiver 7-channel receive RF coil setup was successfully applied for in vivo 7 T MRI of the shoulder providing a clear SNR gain vs the transceiver array without the additional receive array. Homogeneous images across the shoulder region were obtained using 8-channel subject-specific phase-only RF shimming.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.12612DOI Listing

Publication Analysis

Top Keywords

coil setup
20
8-channel transceiver
12
7-channel receive
12
transceiver 7-channel
8
coil
8
receive coil
8
mri shoulder
8
7-channel rx-only
8
rx-only coil
8
setup evaluated
8

Similar Publications

Selecting an appropriate microcatheter tip shape for paraclinoid aneurysms is difficult. Therefore, we devised an original simple and uniform three-dimensional (3D) spiral-shaping method of microcatheter and validated the characteristics and usefulness of this method for coil embolization of paraclinoid aneurysms using patient-specific silicone models. These silicone models were produced based on clinical data from four patients with four paraclinoid aneurysms that underwent endovascular treatment using the 3D spiral-shaping method.

View Article and Find Full Text PDF

Fixed-point thickness measurement is commonly used in corrosion detection within petrochemical enterprises, but it suffers from low detection efficiency for localized thinning, limitations regarding measurement locations, and high equipment costs due to insulation and cooling layers. To address these challenges, this paper introduces a wireless passive ultrasonic thickness measurement technique based on a pulse compression algorithm. The research methodology encompassed the development of mathematical and circuit models for single coil and wireless energy transmission, the proposal of a three-terminal wireless energy mutual coupling system, and the establishment of a finite element model simulating the ultrasonic body wave thickness measurement and wireless energy transmission system.

View Article and Find Full Text PDF

Ultra-high field MRI with parallel transmission (pTx) provides a powerful neuroimaging tool with potential application in paediatrics. The use of pTx, however, necessitates a dedicated local specific absorption rate (SAR) management strategy, able to predict and monitor the peak local SAR (pSAR). In this work, we address the pSARassessment for an in-house built 7 Tesla 16Tx32Rx pediatric head coil, using the concept of Virtual Observation Points (VOPs) for SAR estimation.

View Article and Find Full Text PDF

A compact and mobile stray-field NMR sensor.

J Magn Reson

December 2024

Institute of Smart Sensors, University of Stuttgart, Stuttgart, Germany; Center for Integrated Quantum Science and Technology (IQ(ST),), Stuttgart, Germany; Institute for Microelectronics Stuttgart (IMS CHIPS), Stuttgart, Germany.

In this paper, we introduce a compact, single-sided stray field sensor for NMR relaxometry applications. The sensor consists of four main components: the magnet, the RF coil, the spectrometer, and the translation stage. Our proposed magnet, an improved design of the Profile NMR-MOUSE, is designed for low weight, compactness, and magnetic field homogeneity, achieved through various shim strategies using a mixed genetic algorithm.

View Article and Find Full Text PDF

Torque measurement is a key task in several mechanical and structural engineering applications. Most commercial torquemeters require the shaft to be interrupted to place the sensors between the two portions of the shaft where a torque has to be measured. Contactless torquemeters based on the inverse magnetostrictive effect represent an effective alternative to conventional ones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!