The electronic structure of self-assembled monolayers (SAMs) formed by thiols of different lengths and dithiol molecules bound to Au(111) has been characterized. Inverse photoemission spectroscopy (IPES) and density functional theory have been used to describe the molecule/Au substrate system. All molecular layers display a clear signal in the IPES data at the edge of the lowest unoccupied system orbital (LUSO), roughly 3 eV above the Fermi level. There is also evidence, in both the experimental data and the calculation, of a finite density of states just below the LUSO edge, which has been recognized as localized at the Au-substrate interface. Regardless of the molecular lengths and in addition to this induced density of interface states, an apparent antibonding Au-S state has been identified in the IPES data for both molecular systems. The main difference between the electronic structures of thiol and dithiol SAMs is a shift in the energy of the antibonding state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.7b02839 | DOI Listing |
Free Radic Biol Med
January 2025
Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; Military Institute of Medicine - National Research Institute, Szaserow 128, 04-141 Warsaw, Poland. Electronic address:
Metallofullerenols and fullerenols have attracted attention due to their remarkable ability to interact with various biologically relevant molecules, paving the way for biomedical applications, ranging from medical imaging techniques to drug carriers, acting with increased efficiency and reduced side effects. In this work, we investigated the effects of two fullerene derivatives, Gd@C(OH) and C(OH), on erythrocyte membrane components under oxidative stress conditions induced by 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) as a source of peroxyl radicals. The results demonstrated that gadolinium encapsulation within the fullerene cage enhanced the electron affinity of Gd@C(OH), resulting in stronger antioxidant activity.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
Biology Department, University of Massachusetts Amherst, Amherst, MA, USA.
Background: High-throughput behavioral analysis is important for drug discovery, toxicological studies, and the modeling of neurological disorders such as autism and epilepsy. Zebrafish embryos and larvae are ideal for such applications because they are spawned in large clutches, develop rapidly, feature a relatively simple nervous system, and have orthologs to many human disease genes. However, existing software for video-based behavioral analysis can be incompatible with recordings that contain dynamic backgrounds or foreign objects, lack support for multiwell formats, require expensive hardware, and/or demand considerable programming expertise.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, China.
2,5-Furandicarboxylic acid (FDCA) is one of the top selected value-added chemicals, which can be obtained by the aerobic oxidation of 2,5-bis(hydroxymethyl)furfural (BHMF) over a Pd-based catalyst. However, the elucidation of the reaction mechanism was hindered by its rapid kinetics. Herein, employing the density functional theory (DFT) calculations, we delve into the detailed reaction pathways of the BHMF oxidation into FDCA over Pd(111) and PdH(111) identifying the rate-determining steps.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen 361005, China.
Sluggish redox kinetics and dendrite growth perplex the fulfillment of efficient electrochemistry in lithium-sulfur (Li-S) batteries. The complicated sulfur phase transformation and sulfur/lithium diversity kinetics necessitate an all-inclusive approach in catalyst design. Herein, a compatible mediator with nanoscale-asymmetric-size configuration by integrating Co single atoms and defective CoTe (Co-CoTe@NHCF) is elaborately developed for regulating sulfur/lithium electrochemistry synchronously.
View Article and Find Full Text PDFOpen Biol
January 2025
Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia.
Epithelia are multicellular sheets that form barriers defining the internal and external environments. The constant stresses acting at this interface require that epithelial sheets are mechanically robust and provide a selective barrier to the hostile exterior. These properties are mediated by cellular junctions which are physically linked with heavily crosslinked cytoskeletal networks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!