Cerebrospinal fluid is thought to be mainly absorbed into arachnoid granules in the subarachnoid space and drained into the sagittal sinus. However, some observations such as late outbreak of arachnoid granules in fetus brain and recent cerebrospinal fluid movements study by magnetic resonance images, conflict with this hypothesis. In this study, we investigated the movement of cerebrospinal fluid in fetuses. Several kinds of fluorescent probes with different molecular weights were injected into the lateral ventricle or subarachnoid space in mouse fetuses at a gestational age of 13 days. The movements of the probes were monitored by live imaging under fluorescent microscope. Following intraventricular injection, the probes dispersed into the 3rd ventricle and aqueduct immediately, but did not move into the 4th ventricle and spinal canal. After injection of low and high molecular weight conjugated probes, both probes dispersed into the brain but only the low molecular weight probe dispersed into the whole body. Following intra-subarachnoid injection, both probes diffused into the spinal canal gradually. Neither probe dispersed into the brain and body. The probe injected into the lateral ventricle moved into the spinal central canal by the fetus head compression, and returned into the aqueduct by its release. We conclude this study as follows: (i) The movement of metabolites in cerebrospinal fluid in the ventricles will be restricted by molecular weight; (ii) Cerebrospinal fluid in the ventricle and in the subarachnoid space move differently; and (iii) Cerebrospinal fluid may not appear to circulate. In the event of high intracranial pressure, the fluid may move into the spinal canal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cga.12257 | DOI Listing |
Sci Rep
December 2024
Department of Medical Microbiology, Radboudumc, Nijmegen, The Netherlands.
The aetiology of Alzheimer's disease (AD) and Parkinson's disease (PD) are unknown and tend to manifest at a late stage in life; even though these neurodegenerative diseases are caused by different affected proteins, they are both characterized by neuroinflammation. Links between bacterial and viral infection and AD/PD has been suggested in several studies, however, few have attempted to establish a link between fungal infection and AD/PD. In this study we adopted a nanopore-based sequencing approach to characterise the presence or absence of fungal genera in both human brain tissue and cerebrospinal fluid (CSF).
View Article and Find Full Text PDFJ Neuroimaging
December 2024
Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
Background And Purpose: In idiopathic normal pressure hydrocephalus (iNPH) patients, cerebrospinal fluid (CSF) flow is typically evaluated with a cardiac-gated two-dimensional (2D) phase-contrast (PC) MRI through the cerebral aqueduct. This approach is limited by the evaluation of a single location and does not account for respiration effects on flow. In this study, we quantified the cardiac and respiratory contributions to CSF movement at multiple intracranial locations using a real-time 2D PC-MRI and evaluated the diagnostic value of CSF dynamics biomarkers in classifying iNPH patients.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Oasis Diagnostics® Corporation, Vancouver, Washington, USA.
There is a pressing need for accessible biomarkers with high diagnostic accuracy for Alzheimer's disease (AD) diagnosis to facilitate widespread screening, particularly in underserved groups. Saliva is an emerging specimen for measuring AD biomarkers, with distinct contexts of use that could complement blood and cerebrospinal fluid and detect various analytes. An interdisciplinary, international group of AD and related dementias (ADRD) researchers convened and performed a narrative review of published studies on salivary AD biomarkers.
View Article and Find Full Text PDFNeurol Neurochir Pol
December 2024
Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland.
Introduction And State Of The Art: Systemic lupus erythematosus (SLE) is an autoimmune disease that affects many organs throughout its course, most frequently the joints, skin and kidneys. Both the central (CNS) and peripheral (PNS) nervous systems are also often affected. T he involvement of the CNS has a negative prognosis in lupus patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!