Unlabelled: 6-phospho-β-glucosidases and 6-phospho-β-galactosidases are enzymes that hydrolyze the β-glycosidic bond between a terminal non-reducing glucose-6-phosphate (Glc6P) or galactose-6-phosphate (Gal6P), respectively, and other organic molecules. Gan1D, a glycoside hydrolase (GH) belonging to the GH1 family, has recently been identified in a newly characterized galactan-utilization gene cluster in the bacterium Geobacillus stearothermophilus T-1. Gan1D has been shown to exhibit bifunctional activity, possessing both 6-phospho-β-galactosidase and 6-phospho-β-glucosidase activities. We report herein the complete 3D crystal structure of Gan1D, together with its acid/base catalytic mutant Gan1D-E170Q. The tertiary structure of Gan1D conforms well to the (β/α) TIM-barrel fold commonly observed in GH enzymes, and its quaternary structure adopts a dimeric assembly, confirmed by gel-filtration and small-angle X-ray scattering results. We present also the structures of Gan1D in complex with the putative substrate cellobiose-6-phosphate (Cell6P) and the degradation products Glc6P and Gal6P. These complexes reveal the specific enzyme-substrate and enzyme-product binding interactions of Gan1D, and the residues involved in its glycone, aglycone, and phosphate binding sites. We show that the different ligands trapped in the active sites adopt different binding modes to the protein, providing a structural basis for the dual galactosidase/glucosidase activity observed for this enzyme. Based on this information, specific mutations were performed on one of the active site residues (W433), shifting the enzyme specificity from dual activity to a significant preference toward 6-phospho-β-glucosidase activity. These data and their comparison with structural data of related glucosidases and galactosidases are used for a more general discussion on the structure-function relationships in this sub-group of GH1 enzymes.

Databases: Atomic coordinates of Gan1D-wild-type (WT)-P1, Gan1D-WT-C2, Gan1D-E170Q, Gan1D-WT-Gal6P, Gan1D-WT-Glc6P, and Gan1D-E170Q-Cell6P have been deposited in the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank, under accession codes 5OKB, 5OKJ/5OKH, 5OKA/5OK7, 5OKQ/5OKK, 5OKS/5OKR, and 5OKG/5OKE, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.14283DOI Listing

Publication Analysis

Top Keywords

structural basis
8
structure gan1d
8
gan1d
7
structural
4
basis enzyme
4
enzyme bifunctionality
4
bifunctionality case
4
case gan1d
4
gan1d geobacillus stearothermophilus
4
geobacillus stearothermophilus unlabelled
4

Similar Publications

Structural insights into glucose-6-phosphate recognition and hydrolysis by human G6PC1.

Proc Natl Acad Sci U S A

January 2025

Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

The glucose-6-phosphatase (G6Pase) is an integral membrane protein that catalyzes the hydrolysis of glucose-6-phosphate (G6P) in the endoplasmic reticulum lumen and plays a vital role in glucose homeostasis. Dysregulation or genetic mutations of G6Pase are associated with diabetes and glycogen storage disease 1a (GSD-1a). Studies have characterized the biophysical and biochemical properties of G6Pase; however, the structure and substrate recognition mechanism of G6Pase remain unclear.

View Article and Find Full Text PDF

Molecular mechanism of ligand recognition and activation of lysophosphatidic acid receptor LPAR6.

Proc Natl Acad Sci U S A

January 2025

Faculty of Life Sciences and Medicine, Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.

Lysophosphatidic acid (LPA) exerts its physiological roles through the endothelialdifferentiation gene (EDG) family LPA receptors (LPAR1-3) or the non-EDG family LPA receptors (LPAR4-6). LPAR6 plays crucial roles in hair loss and cancer progression, yet its structural information is very limited. Here, we report the cryoelectron microscopy structure of LPA-bound human LPAR6 in complex with a mini G or G protein.

View Article and Find Full Text PDF

Integration of resistance indicators, metabolomes, and transcriptomes to elucidate that there is a positive correlation between disease susceptibility and cold tolerance in tea plants. The flavonoid pathway was found to be the major metabolic and transcriptional enrichment pathway. A key domain NB-ARC was identified through joint analysis, along with analysis of key domains within the NB-ARC protein.

View Article and Find Full Text PDF

The ability to extinguish contextual fear in a changing environment is crucial for animal survival. Recent data support the role of the thalamic nucleus reuniens (RE) and its projections to the dorsal hippocampal CA1 area (RE→dCA1) in this process. However, it remains poorly understood how RE impacts dCA1 neurons during contextual fear extinction (CFE).

View Article and Find Full Text PDF

Heidelberg Adult and Pediatric Airway Registry (HAPA-Registry).

Methods Protoc

January 2025

Medical Faculty Heidelberg, Department of Anesthesiology, Heidelberg University, 69120 Heidelberg, Germany.

Background: Advanced airway management is of fundamental importance in almost all areas of anesthesiology, emergency medicine, and critical care. Securing the airway is of the utmost importance, as this is a prerequisite for the oxygenation of the human organism. The clinical relevance of airway management is particularly evident in the fact that the primary cause of significant anesthesia-related complications can be attributed to this field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!