Recent studies have demonstrated that combination of modulatory immune strategies may potentiate tumor cell elimination. Most strategies rely on the use of monoclonal antibodies that can block cell surface receptors to overcome tumor-induced immunosuppression or acting as costimulatory ligands to boost activation of T cells. In this study, we evaluate the use of combinations of genetically modified tumor-derived cell lines that harbor the costimulatory T cell ligands 4-1BB ligand, OX40L, and the cytokine GM-CSF. The aim of these treatments is to boost the activation of T cells and the elimination of cancer cells. These tumor-derived cells are able to activate or reinforce T cell activation, thereby generating a potent and specific antitumor response. We developed a high-content imaging assay that allowed us to investigate synergies between different tumor-derived cells expressing modulatory immune molecules, as well as the influence on effector T cells to achieve tumor cell death. These results were then compared to the results of experiments in which we challenged immunocompetent animals using the B16F10 syngeneic model of melanoma in C57BL6 mice. Our results suggest that there is a substantial therapeutic benefit to using combinations of syngeneic tumor vaccines that express immune modulators. In addition, we observed that combinations of tumor-derived cells that expressed costimulatory ligands and GM-CSF induced a long-term protective effect by preventing cancer development in both cured and rechallenged animals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5610681PMC
http://dx.doi.org/10.3389/fimmu.2017.01150DOI Listing

Publication Analysis

Top Keywords

tumor-derived cells
12
combinations tumor-derived
8
modulatory immune
8
tumor cell
8
costimulatory ligands
8
boost activation
8
activation cells
8
cells
7
cell
6
tumor-derived
5

Similar Publications

Background: Small extracellular vesicles (sEV) released by tumor cells (tumor-derived sEV; TEX) mediate intercellular communication between tumor and non-malignant cells and were shown to impact disease progression. This study investigates the relationship between the expression levels of the vesiculation-related genes linked to sEV production and the tumor microenvironment (TME).

Methods: Two independent gene sets were analyzed, both previously linked to sEV production in various non-malignant or malignant cells.

View Article and Find Full Text PDF

Purpose: The aim of our report was to recognize bladder cancer (BC)-specific serum exosome-derived long non-coding RNAs (lncRNAs) profile for early diagnosis of BC.

Methods: Potential BC-specific exosomal lncRNA indicators were discerned by genome-wide microarray profiling analysis of serum exosomes from 10 healthy participants and 10 early stage BC patients (Ta and T1), followed by multi-stage validation through quantitative real-time PCR (qRT-PCR) in BC cells, culture solution as well as 200 serum specimens and 50 tissue specimens from non-muscle-invasive bladder cancer (NMIBC) patients. The diagnostic panel was established using logistic regression and evaluated by receiver-operating characteristic (ROC) curve.

View Article and Find Full Text PDF

Gut microbes play a crucial role in regulating the tumor microenvironment (TME) of colorectal cancer (CRC). Nevertheless, the deep mechanism between the microbiota-TME interaction has not been well explored. In this study, we for the first time discovered that () effectively suppressed tumor growth both in the AOM/DSS-induced CRC model and the spontaneous adenoma model.

View Article and Find Full Text PDF

Combining radiotherapy with targeted therapy benefits patients with advanced epidermal growth factor receptor-mutated non-small cell lung cancer (EGFRm NSCLC). However, the optimal strategy to combine EGFR tyrosine kinase inhibitors (TKIs) with radiotherapy for maximum efficacy and minimal toxicity is still uncertain. Notably, EVs, which serve as communication mediators among tumor cells, play a crucial role in the anti-tumor immune response.

View Article and Find Full Text PDF

Liquid biopsy is an efficient diagnostic/prognostic tool for tumor-derived component detection in peripheral circulation and other body fluids. The rapid assessment of liquid biopsy techniques facilitates early cancer diagnosis and prognosis. Early and precise detection of tumor biomarkers provides crucial information about the tumor that guides clinicians towards effective personalized medicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!