A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration. | LitMetric

In sunlit waters, photochemical alteration of dissolved organic carbon (DOC) impacts the microbial respiration of DOC to CO. This coupled photochemical and biological degradation of DOC is especially critical for carbon budgets in the Arctic, where thawing permafrost soils increase opportunities for DOC oxidation to CO in surface waters, thereby reinforcing global warming. Here we show how and why sunlight exposure impacts microbial respiration of DOC draining permafrost soils. Sunlight significantly increases or decreases microbial respiration of DOC depending on whether photo-alteration produces or removes molecules that native microbial communities used prior to light exposure. Using high-resolution chemical and microbial approaches, we show that rates of DOC processing by microbes are likely governed by a combination of the abundance and lability of DOC exported from land to water and produced by photochemical processes, and the capacity and timescale that microbial communities have to adapt to metabolize photo-altered DOC.The role of dissolved organic carbon (DOC) photo-alteration in the microbial respiration of DOC to CO is unclear. Here, the authors show that the impact of this mechanism depends on whether photo-alteration of DOC produces or removes molecules used by native microbial communities prior to light exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5626735PMC
http://dx.doi.org/10.1038/s41467-017-00759-2DOI Listing

Publication Analysis

Top Keywords

microbial respiration
16
respiration doc
16
organic carbon
12
permafrost soils
12
microbial communities
12
doc
11
microbial
9
photochemical alteration
8
draining permafrost
8
dissolved organic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!