Motionless volumetric photoacoustic microscopy with spatially invariant resolution.

Nat Commun

Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, California, 91125, USA.

Published: October 2017

Photoacoustic microscopy (PAM) is uniquely positioned for biomedical applications because of its ability to visualize optical absorption contrast in vivo in three dimensions. Here we propose motionless volumetric spatially invariant resolution photoacoustic microscopy (SIR-PAM). To realize motionless volumetric imaging, SIR-PAM combines two-dimensional Fourier-spectrum optical excitation with single-element depth-resolved photoacoustic detection. To achieve spatially invariant lateral resolution, propagation-invariant sinusoidal fringes are generated by a digital micromirror device. Further, SIR-PAM achieves 1.5 times finer lateral resolution than conventional PAM. The superior performance was demonstrated in imaging both inanimate objects and animals in vivo with a resolution-invariant axial range of 1.8 mm, 33 times the depth of field of the conventional PAM counterpart. Our work opens new perspectives for PAM in biomedical sciences.Photoacoustic microscopy allows for label-free 3D in vivo imaging by detecting the acoustic response of a photoexcited material. Here, Yang et. al use a digital-micromirror-device based structured illumination scheme to both improve resolution and greatly increase the depth of field, enabling 3D volumetric imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5626698PMC
http://dx.doi.org/10.1038/s41467-017-00856-2DOI Listing

Publication Analysis

Top Keywords

motionless volumetric
12
photoacoustic microscopy
12
spatially invariant
12
invariant resolution
8
resolution photoacoustic
8
volumetric imaging
8
lateral resolution
8
conventional pam
8
depth field
8
resolution
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!