REV-ERBα is a nuclear heme receptor, transcriptional repressor and critical component of the molecular clock that drives daily rhythms of metabolism. Evidence reveals that REV-ERBα also plays an important regulatory role in clock-dependent lung physiology and inflammatory responses. We hypothesize that cigarette smoke (CS) exposure influences REV-ERBα abundance in the lungs, facilitating a pro-inflammatory phenotype. To determine the impact of REV-ERBα activation in the CS-induced inflammatory response we treated primary human small airway epithelial cells (SAECs) with CS extract (CSE) or lipopolysaccharide (LPS) in the absence or presence of pre-treatment with the REV-ERBα agonist GSK 4112. We also exposed adult C57BL/6J (WT) and Rev-erbα global KO mice to CS (10 and 30 days) and measured pro-inflammatory cytokine release. Our data reveal that pre-treatment with GSK 4112 reduced CSE/LPS induced pro-inflammatory cytokines release from both SAECs and mouse lung fibroblasts (MLFs). Furthermore, REV-ERBα KO mice show a greater inflammatory response to 10 and 30 days of CS, including increased neutrophil lung influx, pro-inflammatory cytokine (IL-6, MCP-1 and KC) release, and pro-senescence marker (p16) when compared to WT mice. These data demonstrate that REV-ERBα is a critical regulator of CS-induced lung inflammatory responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5756581 | PMC |
http://dx.doi.org/10.1016/j.bbrc.2017.09.157 | DOI Listing |
The triiodothyronine (T3) inhibitory effect on the thyrotropin (TSH)beta- and alpha-subunit genes is believed to be mediated by binding of T3 to specific nuclear receptors that are present in various isoforms. alphaTSH cells, which are derived from a pure alpha-subunit secreting thyrotropic tumor, contain the same nuclear factors that are important for alpha-subunit gene expression in TSH-expressing T3-responsive thyrotropic cells (TtT97). However, as in the parent tumor, alpha-subunit expression in alphaTSH cells was not inhibited by T3, despite the presence of high-affinity nuclear T3 receptors (TRs) with a similar number of sites per cell as in TtT97.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!