Background: Cisplatin neuro-, oto-, and nephrotoxicity are major problems in children with malignant tumors, including medulloblastoma, negatively impacting educational achievement, socioemotional development, and overall quality of life. The blood-labyrinth barrier is somewhat permeable to cisplatin, and sensory hair cells and cochlear supporting cells are highly sensitive to this toxic drug. Several chemoprotective agents such as N-acetylcysteine (NAC) were utilized experimentally to avoid these potentially serious and life-long side effects, although no clinical phase I trial was performed before. The purpose of this study was to establish the maximum tolerated dose (MTD) and pharmacokinetics of both intravenous (IV) and intra-arterial (IA) NAC in adults with chronic kidney disease to be used in further trials on oto- and nephroprotection in pediatric patients receiving platinum therapy.

Methods: Due to ethical considerations in pediatric tumor patients, we used a clinical population of adults with non-neoplastic disease. Subjects with stage three or worse renal failure who had any endovascular procedure were enrolled in a prospective, non-randomized, single center trial to determine the MTD for NAC. We initially aimed to evaluate three patients each at 150, 300, 600, 900, and 1200 mg/kg NAC. The MTD was defined as one dose level below the dose producing grade 3 or 4 toxicity. Serum NAC levels were assessed before, 5 and 15 min post NAC. Twenty-eight subjects (15 men; mean age 72.2 ± 6.8 years) received NAC IV (N = 13) or IA (N = 15).

Results: The first participant to experience grade 4 toxicity was at the 600 mg/kg IV dose, at which time the protocol was modified to add an additional dose level of 450 mg/kg NAC. Subsequently, no severe NAC-related toxicity arose and 450 mg/kg NAC was found to be the MTD in both IV and IA groups. Blood levels of NAC showed a linear dose response (p < 0.01). Five min after either IV or IA NAC MTD dose administration, serum NAC levels reached the 2-3 mM concentration which seemed to be nephroprotective in previous preclinical studies.

Conclusions: In adults with kidney impairment, NAC can be safely given both IV and IA at a dose of 450 mg/kg. Additional studies are needed to confirm oto- and nephroprotective properties in the setting of cisplatin treatment. Clinical Trial Registration URL: https://eudract.ema.europa.eu . Unique identifier: 2011-000887-92.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627439PMC
http://dx.doi.org/10.1186/s12987-017-0075-0DOI Listing

Publication Analysis

Top Keywords

nac
9
intravenous intra-arterial
8
oto- nephrotoxicity
8
dose level
8
grade toxicity
8
450 mg/kg nac
8
dose
7
dose escalation
4
escalation study
4
study intravenous
4

Similar Publications

Water-dispersible core/shell CuInZnSe/ZnS (CIZSe/ZnS) quantum dots (QDs) were efficiently synthesized under microwave irradiation using -acetylcysteine (NAC) and sodium citrate as capping agents. The photoluminescence (PL) emission of CIZSe/ZnS QDs can be tuned from 593 to 733 nm with varying the Zn : Cu molar ratio in the CIZSe core. CIZSe/ZnS QDs prepared with a Zn : Cu ratio of 0.

View Article and Find Full Text PDF

Bi-targeting of thioredoxin 1 and telomerase by thiotert promotes cell death of myelodysplastic syndromes and lymphoma.

Biol Direct

January 2025

Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.

Thioredoxin1 (TRX1) and telomerase are both attractive oncology targets that are tightly implicated in tumor initiation and development. Here, we reported that the 6-dithio-2-deoxyguanosine analog thiotert exhibits an effective cytotoxic effect on myelodysplastic syndromes (MDS) cell SKM-1 and lymphoma cell U-937. Further studies confirmed that thiotert effectively disrupts cellular redox homeostasis, as evidenced by elevated intracellular reactive oxygen species (ROS) levels, increased MnSOD, accelerated DNA impairment, and activated apoptosis signal.

View Article and Find Full Text PDF

Deep brain stimulation of the anterior cingulate cortex reduces opioid addiction in preclinical studies.

Sci Rep

January 2025

Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 38, Italia Ave., Ghods St, Keshavarz Boulevard, Tehran, Iran.

Substance Use Disorder (SUD) is a medical condition where an individual compulsively misuses drugs or alcohol despite knowing the negative consequences. The anterior cingulate cortex (ACC) has been implicated in various types of SUDs, including nicotine, heroin, and alcohol use disorders. Our research aimed to investigate the effects of deep brain stimulation (DBS) in the ACC as a potential therapeutic approach for morphine use disorder.

View Article and Find Full Text PDF

During the proliferative phase of liver regeneration, insufficient regulation of hepatocyte hydrogen peroxide (HO) overproduction can result in oxidative stress and hepatocyte death. This study aims to investigate the influence of Aquaporin 5 (Aqp5) on liver regeneration by evaluating its role in reactive oxygen species (ROS) generation and NLRP3-GSDMD-mediated pyroptosis. A 70 % partial hepatectomy (PHx) model was established in Aqp5 mice to evaluate the pathological changes in the liver.

View Article and Find Full Text PDF

The role of the nucleus accumbens (NAc) core in determining the valence of innately rewarding saccharin solution intake, methamphetamine (MAMPH)-induced conditioned taste aversion (CTA), and conditioned place preference (CPP) reward remains unclear. The present study utilized the "pre- and post-association" experimental paradigm (2010) to test whether the rewarding and aversive properties of MAMPH can be modulated by an N-methyl-D-aspartic acid (NMDA) lesion in the NAc core. Moreover, it tested how an NAc core NMDA lesion affected the innate reward of saccharin solution intake.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!